
Chapter 6

Rockets: Complex physics made
simple (sort of)

c© June 2011 by Larry Engelhardt

In this chapter we examine the dynamics of rockets. This is a complex topic,
but using a computer—and solving the problem numerically—we will actually be
able to get results without an unreasonable investment of time and effort. (Trans-
lation: This will take some work, but you can do it!)

Since the dynamics of rockets are complex, we will approach our modeling in
stages.1 First we will introduce the theory and implementation of thrust, and using
(only) the force of thrust, you will compare your numerical results with well-known
analytical results. Next, we will include gravity, which is (obviously) important when
on or near the earth. Assuming a constant gravitational force (which is appropriate
as long as the rocket doesn’t go up too high), you will again compare your numerical
results with analytical results. Next, we will incorporate Newton’s universal form
of gravity, which is altitude-dependent. Finally, we will include a simplified—but
still sophisticated—model of air resistance.2 This force becomes important at high
speeds, and it also depends on altitude in a non-trivial way. Before getting to any
of these details though, here is your assignment. . .

1Slight pun intended.
2For a more sophisticated—yet relatively accessible—discussion of the physics of flight, see

N. Harris McClamroch, “Steady Aircraft Flight and Performance,” Princeton University Press
(2011).
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6.1 Assignment

The goal of this chapter will be for you to develop and implement a computer model
to simulate a rocket being launched to the International Space Station (ISS), which
is orbiting at an altitude of 355 km. The values of the parameters for one specific
rocket are provided here, but your program should be constructed such that a user
will easily be able to enter different values of these parameters to simulate different
rockets.

The rocket that is going to be used for the launch that you are assigned to
simulate has the following properties:3

• Empty mass (with no fuel and no payload) is 10,000 kg

• Maximum fuel capacity is 10,000 kg of rocket fuel

• Exhaust velocity is 7000 m/s

• Burn rate is 100 kg/sec

• Reference area (of the front of the rocket) is 10 m2

• Drag coefficient is 0.5

Before the launch takes place, you have been asked to answer the following
questions:

1. Using the rocket’s full fuel capacity, what is the maximum payload that could
be delivered to the ISS?

2. For this same payload, what would happen if we were to only use half of the
fuel capacity? (Could we make it to the ISS? If not, how high could we get?
Could we make it to the ISS using half the fuel capacity, but carrying a smaller
payload?)

3. Create plots of height versus time, velocity versus time, and force versus time
(with a separate curve representing each individual force).

To complete this assignment, you will need to add variables to the Model. You
will need to enter the correct equations in the Evolution. You will need to create a
method to calculate the forces acting on the rocket. You will need to add an event
to print the maximum height that is achieved, and add an event that will pause the

3The significance of each of these properties is discussed in the following sections.



6.2. ROCKET TEMPLATE—FLAME AND FUEL 29

simulation if the rocket hits the ground. You will need to add plots to the View.
Finally, you will need to add text fields to the View in order to be able to vary input
parameters.

6.2 Rocket template—Flame and fuel

Begin by opening the Ejs program RocketTemplate.ejs, running it, and observing
what happens. This program contains a visual representation of a rocket, but you
will notice that very little of the physics has been implemented. In particular,
when you run the program you will notice that rocket fuel is burned—and the mass
of the remaining rocket fuel decreases—but the fuel never runs out! Instead, the
rocket (apparently) continues to burn fuel, even though the mass of the fuel becomes
negative. Unfortunately, this is not realistic. If it were, our energy problems would
be solved!

Before looking at how to fix the fuel problem, let’s start by taking a look in the
View to see how the rocket visualization has been created. You will find an element
in the View named “rocketGroup” which contains the visual representation of the
rocket. Using a “group” element in the Ejs View provides a handy way to construct a
picture—consisting of simpler View elements—that can be translated and/or rotated
as a single entity.4 In this way, all of the rocket’s pieces are guaranteed to ascend
together.5 Within the rocketGroup element, double click on “flame” to view the
properties of the image of the flame. The following (correct) line of code has already
been entered to control the visibility of the flame.

1 ( t>0) && ( burnRate>0)

Listing 6.1: Rocket flame visibility.

Recall that in Java “&&” is the “logical and” operator. This means that if
(t>0) is true and (burnRate>0) is true, then the flame will be visible. Otherwise,
the flame will not be visible. The first part, (t>0), guarantees that the flame will
not be visible before the launch begins (at t=0). The second part, (burnRate>0),
specifies that the flame will be shown if (and only if) rocket fuel is being burned,
so if burnRate=0, the flame will not be visible. This should give a clue as to what
needs to happen in order to fix the problem of burning “negative” rocket fuel!

The reason that rocket fuel continues to be burned even after it has all run out

4Another nice example of combining View elements into a “group” can be found at
www.compadre.org/osp/items/detail.cfm?ID=8243.

5If you wish to modify the drawing of the rocket, or replace it with an existing image, feel free.
This won’t affect the physics in any way.
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has to do with the “burn rate”. An important property of any rocket is the rate at
which fuel is ejected, also called the burn rate, r. Mathematically, the burn rate is

r =
dm

dt
, or if r is constant,(6.1a)

r =
Δm

Δt
.(6.1b)

Here Δm represents the mass of the fuel ejected from the rocket during the time
interval Δt. For example, if a rocket has a burn rate of r = 100 kg/sec, and it
starts out with 10 kg of fuel, that fuel will last for 0.1 sec. Look in Ejs under Model,
Evolution, and you will see where Eq. (6.1) is implemented. (The negative sign
in the evolution specifies that the mass of the remaining fuel should decrease with
time.)

In order to fix the fuel problem, what should happen when the mass of the
rocket fuel is equal to zero? How can this be accomplished? Recall that Ejs has a
built in mechanism to handle situations like this, called an “Event”.6 Go ahead and
add an event to the simulation to fix the fuel problem. Then you will be ready to
get started on the real physics, which begins in the following section.

6.3 Rocket thrust

6.3.1 Theory

As you know, exhaust is shot out of the bottom of a rocket, and—assuming the ve-
locity of the exhaust, vex, is fast enough—the rocket goes up. (Simple enough!) This
phenomenon is referred to as “thrust,” and the material ejected from the bottom of
the rocket is rocket fuel. In this section, we will derive the basic equation needed
to implement the force of thrust in your simulation. (For additional information re-
garding rocket thrust, see http://en.wikipedia.org/wiki/Rocket#Physics and
the links contained therein.)

The details of how and why a rocket moves can be described by Newton’s laws
of motion. Specifically, Newton’s 2nd law can be expressed as

(6.2) F =
dp

dt
,

where F represents the net force on an object, p represents the object’s momentum,
and t represents time.

6See Sec. 5.2 for a reminder of how and why to use Events.
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In order to simulate rockets, we will be solving equations numerically, by tak-
ing many small—but finite—steps. For this reason, it will be convenient to also
introduce the finite difference form of Eq. (6.2),

(6.3) F ≈ Δp

Δt
,

where the approximation will be accurate provided that the time interval, Δt, is
sufficiently small. (Here Δp represents the change in momentum, or “impulse” that
takes place during the time interval Δt.) Now one can easily rearrange Eq. (6.3) to
obtain the impulse equation,7

(6.4) Δp ≈ FΔt.

Now that we have a few equations to work with, let’s stop to think about how
these apply to rockets. When considering a rocket launch, there are two things that
are moving: The rocket is moving up, and a bit of the rocket fuel is moving down.
Hence, Eq. (6.4) applies to both the rocket—which receives an impulse Δpr in the
time interval Δt—and to the bit of ejected rocket fuel—which receives an impulse
Δpf in the time interval Δt. Finally, Newton’s 3rd law tells us that the force exerted
on the rocket by the fuel is equal in magnitude to the force exerted on the fuel by
the rocket. Hence, Δpr = Δpf .

The previous paragraph might be conceptually challenging, but the result is
simple: Each time step, the rocket’s momentum increases by Δpr, and this is equal
to the impulse given to the bit of rocket fuel that was ejected during that time step.
So can we calculate Δpr? The answer is “yes!”. . . by calculating Δpf , as described
below.

Recall from Sec. 6.2 that a rocket’s burn rate is represented by the equation
r = Δm/Δt. Rearranging this equation, the mass of the “bit of fuel” ejected during
one time step is Δm = rΔt. That bit of fuel is ejected at a known exhaust velocity,
vex, so now we just need to recall that (for speeds that are small compared to the
speed of light8) the product of mass times velocity is momentum. Hence, the impulse
given to the bit of rocket fuel is

Δpf = Δm× vex(6.5a)

Δpf = (rΔt)× vex,(6.5b)

and since Δpf = Δpr, the impulse given to the rocket in one time step is

(6.6) Δpr = rvexΔt.

7The ≈ symbol in Eq. (6.4) can be replaced with = in the case that F does not vary with time.
8For speeds close to the speed of light, the “relativistic” equation for momentum must be used

which is p = γmv. For “normal” speeds (v < 106 m/s), γ ≈ 1, so this reduces to p = mv.
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Finally, by combining Eq. (6.5) and (6.3), we can write down the force of thrust,

Ft =
rvexΔt

Δt
, or(6.7a)

Ft = rvex.(6.7b)

Ultimately, after a page or two of mathematical gymnastics we have arrived at
Eq. (6.7). The force of thrust is simply the product of how much rocket fuel is
ejected per second and how fast the rocket fuel comes flying out! Before proceeding
on, be sure to check that the right hand side of Eq. (6.7) does indeed have the correct
units. If it doesn’t, demand your money back for this text.

6.3.2 Implementation

Now it is time to “let there be thrust”! As we have seen in the previous section, the
force of thrust exerted on a rocket is a product of two parameters: The burn rate,
r, and the exhaust velocity, vex. We should appreciate what a simple result this
is! To implement the force of thrust in an Ejs program, we simply need two input
parameters. Where (in Ejs) will changes need to be made? (Hint: If you aren’t sure
what will be needed, look back at what you did to simulate the falling ball.)

Once you have the force of thrust implemented, run the program for various
values of the parameters, and make sure that the results seem reasonable. You
won’t know yet whether or not the results are correct, but you should be able to
assess whether or not they are reasonable. In order to do so, you will need some
output. This would be a good time to create plots of position, velocity, and force as
a function of time.

Note: At this point, even if you have done everything correctly, your results
will only be valid in outer space. For the simulation to be useful on Earth, you will
need to also include other effects, as discussed in the following sections.

6.3.3 Analytic result

At this point, you should have already implemented the force of thrust, and verified
that your simulation yields reasonable results. Now we will check whether or not
these results are correct. The “Tsiolkovsky rocket equation”9 provides a simple

9See http://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation for a discussion of this
equation.
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analytical formula10 for a rocket’s change in velocity. This equation can be written

(6.8) Δvan = vex ln
(m0

m

)
,

where van represents the analytically calcululated velocity, m0 is the initial (t = 0)
mass of the rocket, and m is the current mass of the rocket (after having ejected
some of the rocket fuel). For a rocket that starts at rest (v = 0 at t = 0), this
becomes

(6.9) van = vex ln
(m0

m

)
.

To test your numerical results, include Eq. (6.9) in your program. Which Ejs
window should you use to type the equation? Is there anything that needs to be
added to your program before you include the equation?

After implementing Eq. (6.9), add a new curve (trail) to your plot of velocity
versus time to show the analytic results. Do the numerical and analytic results
appear to match? (If they are not at least close, something is wrong!) Also calculate
the error (the difference between the numerical and analytic velocities), and plot this
as a function of time. Does the error increase, decrease, or stay constant as a function
of time? Does this make sense? Try different ODE solvers to see which ones yield
the best results, and vary the value dt to test for convergence. (Best sure to include
some data to support your conclusions regarding the ODE solvers and convergence.)

Note that—using Eq. (6.9) as a starting point—the height of the rocket can
also be calculated analytically. This would require you to analytically evaluate the
integral

(6.10) yan(t) =

∫ t

0

van dτ,

where the variable of integration, τ , represents the time at each instant in the range
0 < τ < t. To carry out this integration, you would first need to write m in terms
of time. Then you will probably need to consult an integral table or make use of a
symbolic computer algebra system. (See Sec. 9.7 for an introduction to the SymPy
library for symbolic mathematics.)

10Recall, this equation is “analytic” because it does not require “stepping” from a previous value.
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6.4 Gravity

6.4.1 Theory

We will introduce—and you will be asked to implement—both of the familiar11

models of gravity. First, as long as we keep the rocket relatively close to the surface
of the earth, the force of gravity exerted on the rocket is

(6.11) Fg = mgs,

where m is the mass of the rocket and gs is the gravitational force per unit mass
at the surface of the Earth, gs ≈ 9.81 Newtons/meter.12 The implementation of
Eq. (6.11) is discussed in the next section.

As you know, when a rocket travels to high altitudes, or even leaves Earth
entirely, the force of gravity becomes weaker. When this happens, Eq. (6.11) won’t
quite work. Specifically, the value of the gravitational force per unit mass gets
smaller, so in Eq. (6.11) we will replace gs with g, where g = gs near the surface of
the Earth, but g < gs at high altitudes. The more general form of Eq. (6.11) then
becomes

(6.12) Fg = mg.

So how do we calculate the value of g for a rocket in flight? The answer is that
we must use “Newton’s universal law of gravitation,”

(6.13) Fg =
GMm

d2
,

where G is “the gravitational constant,” M and m are the masses of the two at-
tracting objects (i.e., the Earth and the rocket), and d is the distance between the
centers of the two attracting objects. Comparing Eq. (6.12) and (6.13), we can easily
identify that

(6.14) g =
GM

d2
,

and we note that—for the special case of being on the surface of the Earth—d = Re,
so Eq. (6.14) becomes

(6.15) gs =
GM

R2
e

,

11There are also less familiar models, such as general relativity, but as long as we keep the rocket
away from any black holes, the current models will suffice.

12The value of gs does vary somewhat with location on Earth. By using a different value of gs,
Eq. (6.11) can also be applied near the surface of other large bodies (e.g., the moon or Mars). See
http://en.wikipedia.org/wiki/Gravity_of_Earth for additional details.
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where Re is the radius of the Earth (Re ≈ 6.37× 106 m).13

We could be finished at this point, using Eq. (6.12) and (6.14) to calculate
the force of gravity. However, the constants G and M are not very convenient
(G ≈ 6.674× 10−11 N m2/kg2 and M ≈ 5.9722× 1024 kg), so we will do a bit more
math to rewrite Eq. (6.14) to avoid using these constants.

Note that by rearranging Eq. (6.15), one finds GM = gsR
2

e, which can be
inserted into Eq. (6.15) to give

(6.16) g =
gsR

2

e

d2
.

Finally, when simulating our rocket, we are interested in the height (or altitude)
of the rocket, y—which is measured from the surface of the Earth, not the center.
Hence we will make the replacement d = Re+y in Eq. (6.16). After a few additional
lines of algebra,14 this gives the convenient result,

(6.17) g =
gs(

1 + y

Re

)2
.

Now we are done with gravity! Before proceeding to the implementation of
Eq. (6.12) and (6.17), do check that Eq. (6.17) seems reasonable. Are the units
correct? What value of g does it yield for y = 0? How about for y = Re? How
about for y = 6 meters? (This would correspond one one-millionth of the Earth’s
radius, which is about the top of a two-story house.)

6.4.2 Implementation

To implement gravity, you will need to calculate another force, just as you already
calculated the force of thrust. The force of gravity is fairly easy to calculate, but be
aware that—even when using Eq. (6.11)—this force is not constant. The rocket is
losing mass every time step, so be sure to use the current mass of the rocket. Add a
curve for Fg to your force versus time plot. How does Fg depend on time? Does this
make sense? How does the value of Fg compare to Ft? After implementing gravity
using Eq. (6.11), compare your results (for velocity versus time) with the analytic
equation given in the following section before proceeding.

To accurately model the motion of a rocket at high altitudes, Eq. (6.12) and
(6.17) should be used. As always, make sure that your results seem reasonable! How

13The radius of the Earth varies by about 0.5% between different locations. See
http://en.wikipedia.org/wiki/Earth_radius for details.

14It is left to the reader to verify that Eq. (6.16) does indeed lead to Eq. (6.17)
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does the gravitational force depend on time? Can you notice any differences between
the current results and the results that you obtained using Eq. (6.11)? Explain.

6.4.3 Analytic result

Assuming a constant gravitational force per units mass, the force of gravity adds
a very simple correction to Eq. (6.9). Namely, the gravitational force causes an
additional (constant) acceleration equal to −gs, so the analytic velocity is now given
by

(6.18) van = vex ln
(m0

m

)
− gst.

Make this correction to your analytical calculation of velocity, and verify that
the analytical results agree with the numerical results, assuming Fg = mgs. Do the
numerical results converge to the analytical results as you decrease the time step?
If not, there is a problem. . . be sure to fix it!

Using Eq. (6.18), the height can also be calculated analytically, as described at
the end of Sec. 6.3.3. However, we will not be able analytically calculate the velocity
and height for the more general model of gravity (where g decreases with altitude
according to Eq. (6.17)). Here’s why: An analytical calculation of velocity involves
the integral, Δv =

∫
a(t) dt. However, the acceleration, a = F/m now depends on

the height, y, in a complicated way; and in order to calculate the height, we need to
know the velocity: Δy =

∫
v(t) dt. Things have suddenly become very complicated!

Moreover, you will soon be implementing a sophisticated model of air resistance,
causing the acceleration to become even more complicated.

There is an important lesson to be learned here regarding analytical

results! Relatively simple analytical results serve an important role: They allow
us to verify that a numerical solution is correct (that we haven’t screwed something
up!) and to test the numerical accuracy of the approximations. However, at a
certain point we simply “run out” of analytical results. At this point, the hope is
that our numerical solution has already been tested with sufficient rigor, such that
we are relatively confident with our next results—even though we will not be able
to compare them with an analytical solution.
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6.5 Air resistance

6.5.1 Theory

At this point, you have already developed a fairly sophisticated model of a rocket
being launched! However, when an object goes fast, air resistance is important—so
we will now introduce air resistance. Note, however, that air resistance is compli-
cated! It will be necessary to make several simplifying assumptions, but in the end,
we will have a model that is simple enough to be implemented, yet “rich” enough
to yield interesting results.

As we discussed in the previous chapter, there is not a single “correct” model
of air resistance. However, the drag equation,15

(6.19) �Fd = −1

2
ρACdv

2v̂,

should provide an accurate model to describe the force of air resistance that is
exerted on a fast-moving rocket. The −v̂ in Eq. (6.19) indicates that the direction
of this force opposes the motion of the rocket, and the remaining 1

2
ρACdv

2 is the
magnitude of this force. Here A is the reference area and Cd is the drag coefficient,
which are both (constant) properties of a rocket’s shape. v is the speed of the rocket,
and ρ is the density of the fluid through which the rocket is moving—i.e., air.

The one complicated piece of Eq. (6.19) is density: As altitude increases, air
becomes less dense. This phenomenon is very relevant to mountain climbers, and is
also the reason that very few commercial aircraft have retractable roofs!16 So how
do we calculate ρ for our rocket in flight? On the microscopic scale, the density
depends on the detailed interactions between the molecules in the air; but, these
interactions are prohibitively complex. An alternative approach that will be simple
enough for us to implement—yet rich enough to provide interesting results—will be
to model the air as an ideal gas.17 The ideal gas law states

PV = nRT, or(6.20a)

n

V
=

P

RT
,(6.20b)

15See http://en.wikipedia.org/wiki/Drag_(physics) a discussion of various types of drag,
including Eq. (6.19).

16I’m sure this is not the only reason. . .
17The ideal gas law is based on the assumption that the individual atoms or molecules in the

gas do not interact with one another, which should provide reasonably accurate results provided
that the density of the gas is not too high. (If molecules are “squished together” too much,
intermolecular interactions cannot be ignored.)
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where P is the pressure of the gas, V is the volume of a certain amount of the gas,
n is the number of moles contained in that volume, R is the “ideal gas constant”
(R = 8.314 Joules

Kelvin×mole
), and T is temperature. From Eq. (6.20b), we can obtain

density by multiplying both sides by the molar mass or air,18 M = 0.02896 kg/mole.
The quantity Mn

V
is density, so

(6.21) ρ =
PM

RT
.

Note that Eq. (6.21) now contains two variables that will vary with altitude:
temperature and pressure. This might seem like we have gone “backwards” from
Eq. (6.19), but the advantage is that T and P can both be evaluated directly as a
function of altitude, y. To do this, we will assume that the temperature decreases
linearly19 with increasing altitude, i.e.,

(6.22) T = T0 − Ly,

where T0 is the temperature at sea level (which has an average value of T0 = 288
K) and L is the “temperature lapse rate” (L = 0.0065 Kelvin per meter). Note
that, according to Eq. (6.22), T = 0 will be reached at a certain (easily calculated)
altitude. This is not physically accurate; in practice, “absolute zero” cannot ever
be achieved, but it does provide a convenient way for us to identify the top of the
Earth’s atmosphere for our model. We will simply assume that the rocket has left
the Earth’s atmosphere if Eq. (6.22) gives a value of T ≤ 0.

Assuming that temperature varies linearly with altitude, the pressure at any
altitude is then given in terms of T by20

(6.23) P = P0

(
T

T0

) gM

RL

,

where P0 is the pressure at sea level (which has an average value of P0 = 1.01× 105

N/m2).

18Assuming that the chemical composition of air is constant, the molar mass is also constant.
However, this molar mass does vary somewhat with humidity.

19The assumption of linear temperature decrease is actually only accurate in-
side the troposphere (the lowest layer of the Earth’s atmosphere), as described at
http://en.wikipedia.org/wiki/Density_of_air#Altitude. However, in order to avoid a
more complex model, we will apply this model into the stratosphere (the next layer of the
atmosphere) as well. If you wish to develop a more sophisticated model, you can begin to find out
more about the stratosphere at http://en.wikipedia.org/wiki/Stratosphere.

20We will not derive Eq. (6.23), but we will briefly outline its origin. The pressure gradient,
dP
dy

, can be integrated to find the change in pressure: ΔP =
∫

dP
dy

dy. The infinitesimal change
in pressure, dP , will depend on the weight of the air in a column immediately above the current
altitude, which subsequently depends on pressure and temperature, leading to Eq. (6.23). (See
http://en.wikipedia.org/wiki/Troposphere#Pressure.)
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With Eq. (6.23), we now have all of the pieces that are necessary to implement
air resistance! Clearly, air resistance is significantly more complicated than thrust
or gravity; and for a truly accurate model of a specific launch, the current, local
atmospheric conditions should be used for input parameters. However, we now have
a model that is able to provide a rich—yet tractable—simulation of all three of the
major forces that act on a rocket.

6.5.2 Implementation

From the discussion in the previous section, air resistance is more complex that
thrust and gravity. . . but it’s not actually hard. Using Eq. (6.19), the magnitude of
the drag force depends on two constants (which are determined by the shape of the
rocket) and two dynamical variables—both of which we can calculate.

At this point, go ahead and implement the drag force, being careful of its
direction as well as its magnitude. As always, make sure that the results make
sense. To complete this assignment, refer back to the information and questions
provided in Sec. 6.1.

6.6 Reflection

Before leaving from the rocket, it will be useful to briefly reflect on a couple of
important lessons/strategies that it has taught us. First, our simulation—and the
implementation of air resistance in particular—provides a striking example of what
a model actually is. Einstein famously said, “Everything should be made as simple
as possible, but not simpler,” and that is exactly what we have done. The detailed
interactions of the molecules in the air—both with each other and with the rocket—
are responsible for air resistance, but these interactions are too complex for us
to simulate. We could ignore air resistance all together, but that would be too
simple. Instead, we have constructed a model of air resistance that behaves correctly
(increasing with speed, but decreasing with altitude), yet is simple enough to be
implemented. This is what the process of “modeling” is all about, and it is extremely
important to modern scientific inquiry.

Our rocket simulation has also provided an example of the usefulness—and
limitations—of analytical results. Our main focus throughout this text is on solv-
ing problems numerically (not analytically): We take many small steps,21 where
in each step we obtain the next value by “iterating” on the previous value. The

21More accurately, we instruct the computer to take many small steps.
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advantage of this numerical approach is that it can be applied to arbitrarily com-
plex problems (even the altitude depended air resistance introduced in Sec. 6.5.1).
However, numerical results involve certain unavoidable approximations, so it is im-
portant to always have a sense of what level of accuracy numerical results do—and
do not—provide. This is where analytical results are useful. Analytical results can
be evaluated directly (by simply plugging numbers into the right hand side of an
equation), so they do not require approximations. A direct comparison between
analytical and numerical results thus allows us to “test out” a numerical approach.
The disadvantage of analytical approaches is that they can only be applied to rel-
atively simple situations. Hence, the strategy that is commonly used is to start
with a simple (analytically tractable) model, test a numerical implementation, then
apply the numerical implementation to a somewhat more “beefed up” model.


