Adding “Events” in EJS

© July 2011 by Larry Engelhardt

This document provides a description of “events” in EJS—both what
they are and how they are added.

1 What is the purpose of an “event” in EJS?

The purpose of an “event” is to provide a way for a certain action to occur
(for example, pausing the simulation) at the exact instant that a certain
condition is met (for example, a ball hitting the ground). For the example of
a falling ball, the following lines of code can be used to implement the FEuler
algorithm:

y =y + vkdt; // Update the height, y (using the velocity)
v = v + axdt; // Update the velocity, v (using the acceleration)
t =t +dt; // Update the time, t (using the time step, dt)

For the example of a ball hitting the ground, the “event” is analogous to
the following lines of code:

if (y < 0) // If the condition is true...
{ // then the code within {...} is executed
_pause(); // This pauses the simulation.

}

Note these lines of code pause this simulation when the ball hits the
ground. (More precisely, this pauses the simulation after the ball hits the
ground.) Using an event will accomplish the same purpose, but the use of
an event will be superior to these lines of code in two ways:

1. The event will be more accurate than this code.

2. The event will be even simpler to create than this code.

Using an event will be more accurate than the lines of code listed above
for the following reason. The lines of code above are only executed at the
discrete time steps t = 0, At, 2At, 3At, 4At, etc. When using an event,
EJS does much better than this. If the height is found to change from
a positive value to a negative value between ¢t = 2At and ¢t = 3At, the
ODEs will be re-evaluated (meaning that the height will be re-evaluated)
at t = 2.5At (midway between the two times). This will hence provide a
better approximation to the actual time that the ball hits the ground. This
process will then be repeated. If the height is found to change from positive
to negative between ¢t = 2At and t = 2.5At, the ODEs will be re-evaluated at
t = 2.25A¢ (the new midway point between the times). The number of times
that this process is repeated is referred to as the number of iterations, and
since each iteration involves cutting the time interval in half, this method
is referred to as the bisection method. After several iterations, this process
should give a very accurate approximation to the exact moment that the
event occurs. (This process of finding precisely where a function crosses zero
is generally referred to as root finding.)

2 How are events added in EJS?

Creating an event in EJS is also very simple to do. After creating a page of
ODEs, an event can be added by clicking on the button labeled “Events”.
After creating an event, a window will appear. This window is shown in
Fig. [1]

At the top of the window shown in Fig. [I| several options can be specified.
The menu in the top left corner allows you to choose the “type” of event to
be used, as described in the following section. The maximum number of
iterations (described in the previous section) can also be specified at the
top of the page. In the top right corner, the method of iteration can be
selected. The bisection method is described in the previous section. The
secant method is similar, but uses a secant line between the two points in
time to estimate when the crossing event occurs.

Finally, it is necessary to specify the “Zero condition” and the “Action”.
The zero condition consists of one or more lines of code, and it must include
a return statement. The quantity (or the variable) following the word
“return” will be checked to see whether or not the event has occurred (e.g.,

2

[Ejs] Events for ODE Evol Page

Event
Type | State event w | [terations |[100 &3| Method |BISECTION |+
Zero Condition Tal [1.0e-35 (=]

return 1.0;

et T

Action End step at event

Figure 1: The blank page that appears when adding an event.

whether or not the ball has hit the ground). For example, with the statement
return 1.0; the event will never occur because 1.0 will always be greater
than zero! In fact, you would never want to return a fixed numerical value
because a fixed value can never change sign. Hence, you need to replace
the “1.0” with the thing that does cross zero (and does change sign) at the
moment that the event should occur. One of the keys to using an event is to
decide what quantity should follow the word return. The “Action” is the
code to be executed when the event occurs, and it needs to be entered into
the lower part of the window.

For the example of a ball hitting the ground, the event can be described
as “the moment that the height crosses the value y = 0”. Hence, the
return statement would be return y;. This completed event is shown in

Fig. [2|

[Ejs] Events for ODE Evol Page

Event

Type |5State event Iterations (100 Method |B!SECTIDH

Zero Condition Tol[1.0e-5 |

return v;

ey

Action End step at event

Lpause s

Comment|Pauses the simulation when the ball hits to ground

feno effect action| Check events at steps not larger than | | @

Figure 2: The completed event that will pause the simulation when an object
hits the ground.

3 Different “types” of events

In the upper-left corner of the Event window (visible in Figs. |1} and , you
are able to choose between three different “types” of events:

1. State event
2. Zero crossing
3. Positive crossing

Specifying the “type” of event to use can be a bit confusing for the follow-
ing reason: Your choice of which type of event to use doesn’t matter. .. unless
it does! For example, the event shown in Fig. [2] that pauses the falling ball
will work correctly regardless of which type of event is used. In other situa-
tions though, the correct choice of event type can be very important.

Let us first consider the “Zero crossing” event. This does exactly what
you would expect. When the value of the quantity specified by the return
statement crosses zero, the event is triggered, and the Action is executed. The
“Positive crossing” event does the same thing, except this type of event is only
triggered when the value of the quantity changes from positive to negative—
not negative to positive. Clearly either of these would work for the falling
object, since—at the moment that it hits the ground—the height crosses zero
and changes sign from positive to negative. As a different example, when
using an event to measure the period of some type of oscillation, you might
wish to use a positive crossing rather than a zero crossing. This would allow
you to measure the complete period rather than only half an oscillation.
You might wonder why there is not a corresponding “Negative crossing”.
Detecting a negative crossing is a very reasonable thing to want to do, and
it is very easily accomplished: Simply use a positive crossing, and include a
negative sign after the word return in the Zero Condition!

The “State event” is just like the “Positive crossing” event, except that a
state event should be used in situations where it is not allowed for the value
of the quantity to be negative. Examples could include objects bouncing off
of the ground, or off of a wall, or off of each other. In these situations, you
are required to include code within the Action that will keep the quantity
(following the return) out of the “forbidden region”. For the examples of
bouncing objects, this is accomplished by simply changing the sign of the
velocities within the action. For a concrete example of the difference between
state events and positive crossing events, do the following:

1. Open the Event window shown in Fig. , and remove (or comment
out) the line of code that appears in the Action. (Now the program
will continue after the event is triggered.)

2. Run the program with State event selected for the event type. With a
state event, negative values are not allowed, so you will see an error.
(This is EJS politely tapping you on the shoulder to let you know that
you are “breaking the rules”.)

3. Run the program again with either Zero crossing or Positive crossing
selected for the event type. Now there is no error, since negative values
are allowed for these types of events.

As a final example, again select “State event,” but now specify v. .= -0.9%v;
for the Action. This will make the ball bounce; but since the coefficient of

restitution is less than 1, the maximum height of the ball will decrease by
the same fraction with each bounce. We could now ask the question, “How
long will it take for the ball to come to rest?” which is reminiscent of Zeno’s
paradoxes. To address these situations, click on the “Zeno effect action” but-
ton shown in the lower-left corner of Fig. 2] and enter additional code to be
executed in the event of infinitesimal bounces—e.g., pausing or resetting the
simulation.

	What is the purpose of an ``event'' in EJS?
	How are events added in EJS?
	Different ``types'' of events

