

- 2. Check boxes for m^*g (weight of object), R (contact force on object due to track) and v (velocity of object).
- 3. Click play, and observe the arrows representing the weight and contact force vectors.
 - (a) When object is approaching the bottom/top of loop, click pause.
 - (b) Click step-play repeatedly and observe the magnitudes and directions of the forces when the object is at the bottom/top.
 - (c) Click play to resume.

4. For each value of *H* shown in the table below, draw and label the force diagram and the velocity diagram of the object at the bottom and top of the loop; and draw the path of the object. (You may use step-play when the object is approaching the location of interest.)

н	At bottom of loop		At top of loop		path
	force diagram	velocity	force diagram	velocity	of object
3.0 r					
2.0 r					

5. Experiment with the simulation to determine the minimum value of H in terms of r when it just loses contact with the track. Record the value of H. Draw and label the force diagram and the velocity diagram when this occurs; and draw the path of the object.

	At top of	of loop	path of object	
H_{\min}	force diagram	velocity		