If the variation with time of displacement is as shown, then the
energies should be drawn as shown.
recalling Energy formula
PE = ½ k x2
in terms of time t,
x = x0 sin(ωt)
differentiating with t gives
v = v0 cos (ωt)
therefore, KE = ½ m v2= ½ m (v0 cos (ωt))2= ½ m (x02ω2)cos (ωt))2
PE = ½ k x2= ½ (mω2 )(x0 sin (ωt))2=
½ m (x02ω2 )sin (ωt))2
therefore total energy is a constant value in the absence of
energy loss due to drag (resistance)
TE = KE + PE = ½ m (x02ω2 )[cos2(ωt)
+ sin2(ωt))] = ½ m (x02ω2)
general energy formula | SHM energy formula | when t = 0 | when t = T/4 | when t = T/2 | when t = 3T/4 | when t = T |
KE = ½ m v2 | ½ m (x02ω2)cos (ωt))2 | ½ m (x02ω2) | 0 | ½ m (x02ω2) | 0 |
½ m (x02ω2) |
PE = ½ k x2 | ½ m (x02ω2)cos (ωt))2 | 0 | ½ m (x02ω2) | 0 | ½ m (x02ω2) | 0 |
TE = KE + PE | TE = ½ m (x02ω2) | ½ m (x02ω2) | ½ m (x02ω2) |
½ m (x02ω2) |
½ m (x02ω2) | ½ m (x02ω2) |