Lesson Plan

Subject: Physics
Unit: General Waves Properties
Topics: Describing and Understanding Wave Motion - Transverse Waves
Level: Upper Secondary Normal/Express
Duration: 90 min

Learning Outcomes (LOs):

Students should be able to:

- understand the motion of the individual particle in a wave from the Displacement-Time graph;
- understand conceptually how a (travelling) wave motion is formed by the interaction of different particles due to the source of wave.

Teaching ideas in Physics: Transverse Waves

Tip1: The periodic oscillating force generates waves through the medium with the particles vibrating with the same periodic motion.
Tip2: The particles in the medium vibrates periodically about their equilibrium position hence no mass transfer.
Tip3: The particles in the medium are held together by the bonding between them allowing energy to be transferred through them.

Prior Knowledge/Pre-Requisite Knowledge of Pupils:

Students should be able to

- apply the concepts of speed and velocity
- deduce from the shape of a displacement-time graph when a body is:
(i) at rest
(ii) moving with uniform velocity
(iii) moving with non-uniform velocity

Common Learning Difficulties and Misconceptions:

1. Students have difficulty in visualizing the particles motion in waves
2. Students have difficulty visualizing subsequent motion of particles in a wave motion
3. Student have difficulty explaining the motion of waves in terms of the particles movement.
4. Students think that all sound waves are transverse waves; this is because the displacementdistance graph of sound waves are shaped like transverse waves.
5. Students have difficulty using apps/videos to study wave properties without guidance.

Pedagogical Reasoning and Planning Guide

- Singapore Teaching Practice (STP)
- PCK
- 3Cs Pedagogical Framework for Inquiry Science (Poon, 2010) / Visualisation Based Learning

PP	Learning Activity / 3Cs	Time (min)	Resources
TA: Arousing Interest TA: Encouraging Learner Engagement TA: Using Questions to Deepen Understanding	$1^{\text {st }} \mathbf{C}$ - Capture Interest Engaging in a Real World Phenomenon Making Learning Meaningful Teacher to emphasise the importance of learning wave an understanding of Tsunami and Earth Quake (P waves and S waves) can save lives. Students to watch a demonstration of a rope wave generated by the teacher. Note: A sticker is secured on a point on the rope to indicate that point of the rope did not move in the direction of the wave - there is no transfer of mass. 1. Ask students what they observed. 2. Summarise their key observations. 3. Draw students' focus to the individual particles in the rope - students to observe carefully how the sticker move as the wave travels away from the source of disturbance. Question: In which direction does the sticker move with respect to the wave? 4. Introduce the single particle demo kit: Ask students to imagine that the rope is being divided into many particles with one of the particles represented by the label/sticker before introducing the demo kit for simulating a single particle motion in a wave. Success Criteria: Students able to see that the energy transfer through the rope is away from the oscillating force as seen by the movement of the crests away from the oscillating force. $\checkmark \quad$ Students able to see that the rope is made up of many particles and all particles are held together by the bonding between them. $\checkmark \quad$ Students able to see that every particle vibrates perpendicularly to the direction of wave motion.	10 min	PPT Gym rope Sticker/label Single particle demo kit set

	24 s , this is to bring across the key concept of periodic motion. Success Criteria: $\checkmark \quad$ Students must be able to use the plotted displacement-time graph of a single particle of the rope to simulate the single particle motion (Deductive approach activating on prior knowledge of kinematics) $\checkmark \quad$ Students are able to use alternative method (gradient of tangents) to interpret the motion of the particle. $\checkmark \quad$ Students are able to understanding after all particles are set in motion, the periodic motion of every particles and hence the whole wave continue.		
	$2^{\text {nd }} \mathrm{C}-$ Construct Understanding	20 min	
TA: Pacing and Maintaining MomentumManaging transition from individual particle motion to whole wave motion	Activity 2.1 (Whole Class) Teacher to ask 13 students each holding on to a demo kit set to simulate the particles motion from $t=$ 0 s at the point when all 13 particles are at their equilibrium position to $t=24 \mathrm{~s}$. Teacher needs to explain the format of this demonstration: 1. There are millions of particles that make up the complete rope. 2. Teacher explains that the 13 consecutive particles chosen is such that after the 1st particle has moved, the 2nd particle will move 1 s later, and so on.		Activity 2.1: Worksheet Metronome 13 Demo kit set per group
TA: Facilitating Collaborative Learning Whiteboarding	(Groupwork) Students get into groups of four. Each group will have to capture photos of the set of 13 particles for $t=$ 0 s to $\mathrm{t}=12 \mathrm{~s}$. The photos will need to be submitted to teacher through online portal (e.g. Whatsapp, Padlet or Stop-motion)		
TA: Exercising Flexibility	Ongoing Assessment Teacher to get two groups to share their particles' motion in a complete wave from $t=0 \mathrm{~s}$ to $\mathrm{t}=12 \mathrm{~s}$. Teacher to play back the 13 photos that each group captured from $t=0 \mathrm{~s}$ to $\mathrm{t}=12 \mathrm{~s}$ to create an animated wave.	20 min	
TA: Using Questions to Deepen Understanding	Questions: 1. How did particle 1 interact with particle 2? 2. How is the energy transfer possible?		

	Activity 2.2 From the simulation panels, measure the distances of particles 1 to 13 from the point of disturbance. Fill in the distances in the boxes provided in the worksheet.		Activity 2.2: Worksheet
TA: Concluding the Lesson TA: Setting Meaningful Assignments Using demo kit to show and tell	$3^{\text {rd }} \mathbf{C}$ - Consolidate Learning Students complete a series of questions individually to check on their understanding. There are two extensions questions to consolidate students' learning - students to plot the positions of all particles at $\mathrm{t}=24 \mathrm{~s}$ and $\mathrm{t}=30 \mathrm{~s}$. Success Criteria: Students are able to understand that the oscillating force is the cause of the wave. $\checkmark \quad$ All particles in the wave has the same periodic motion as the oscillating force. $\checkmark \quad$ The amplitude of the wave remains constant if there is no energy lost. Students are able to describe how a wave is formed from the time when all particles are at rest to the time when all particles continue their periodic motion. $\checkmark \quad$ Students are able to see that all particles are held together by the bonds between them. The bonding allows one particle to link with another, such that the motion of one particle will affect the motion of others linked to it. It is this bonding/link that allows energy to be transferred from one particle to the next. Students are able to understand the definition of distance on the horizontal axis of displacementdistance graph and demonstrates this understanding by being able to physically measure the distance from the oscillating force at position 1 to the respective equilibrium positions of each particle.	20 min	Activity 2.3: Worksheet Activity 2.4: Worksheet

Reflections:

\qquad
\qquad
\qquad
\qquad

