Translations
Code | Language | Translator | Run | |
---|---|---|---|---|
![]() |
Software Requirements
Android | iOS | Windows | MacOS | |
with best with | Chrome | Chrome | Chrome | Chrome |
support full-screen? | Yes. Chrome/Opera No. Firefox/ Samsung Internet | Not yet | Yes | Yes |
cannot work on | some mobile browser that don't understand JavaScript such as..... | cannot work on Internet Explorer 9 and below |
Credits
Wolfgang Christian; Tan Wei Chiong; lookang
end faq
Sample Learning Goals
[text]
For Teachers
This simulation depicts the spreading of a free particle's wavefunction, as predicted by the Schrödinger equation. You can view the particle's momentum or position by changing the option in the simulation, and toggle between a normal filled graph and a graph that shows real/imaginary parts of the wavefunction with the Re/Im option. In addition, the uncertainty σ of the particle's momentum and position can be adjusted with the slider provided.
Note how the speed at which the wavefunction spreads changes with the uncertainty. Also note that the integral of the squared modulus of the wavefunction (the integral of the probability density function a.k.a. area under the curve) is always a constant 1.
Research
[text]
Video
[text]
Version:
- http://weelookang.blogspot.sg/2016/02/vector-addition-b-c-model-with.html improved version with joseph chua's inputs
- http://weelookang.blogspot.sg/2014/10/vector-addition-model.html original simulation by lookang
Other Resources
[text]