Print

 

 

 

Download ModelDownload Sourceembed

About

Intro Page

nuclear_binary_system_matlab_octave.m - by Javier E. Hasbun and Benjamin E. Hogan (2012)

For a binary system, such as the one shown below, we can use the following equations to determine the motion of m1 and m2:

r1 = rcm - (m2/M) r
r
2 = rcm + (m1/M) r
r
cm = (m1r1+m2r2)/M
μr'' = f r/r
μ = m1m2/m1+m2

Since we know that

μr'' = f r/r

we can solve for r'' giving

r'' = (f/μ) r/r

Seperating this into x- and y-components gives

d2x/dt2 = (f/μ)*x/√(x2+y2)

d2y/dt2 = (f/μ)*y/√(x2+y2)

Next, we need to find the force. Using the WOODS-SAXON spherically symmetric potential which is given by

V(r) = -V0*ff(r,R,a)

where ff(r,R,a) is a Fermi-function form factor given by

ff(r,R,a) = [1+exp(r-R/a)]-1,

and the parameters are

Vo = 52.06 MeV

a = 0.662 fm

R = R0*A^(1/3), Ro = 1.26 fm.

Since we know that a potential is defined as V(r) = ∫ f(r)∙dr,

we can find f(r) by taking the derivative of V(r) w.r.t. r. We get

f(r) = -V0*exp(r-R/a)/{a*[1+exp(r-R/a)]}.

This is then inserted into the equations of motion giving

d2x/dt2 = -V0*exp((r-R)/a)*x/{a*μ*[1+exp((r-R)/a)]*√(x2+y2)}

d2y/dt2 = -V0*exp((r-R)/a)*y/{a*μ*[1+exp((r-R)/a)]*√(x2+y2)}

Solving these equations give the x- and y-coordinates of the center of mass which in turn give the x- and y-coodinates of m1 and m2, respectively.

To ensure unit compatibility, let

x = X*a0

y = Y*a0

a = A*a0

R = R*a0

t = T*tau

V0 = V0*Eb

m1 = M1*m0

m2 = M2*m0

μ = μ*m0

The equations of motion then become

d2X/dT2 = -V0*exp((sqrt(X^2+Y^2)-R)/A)*X/{A*μ*[1+exp((sqrt(X^2+Y^2)-R)/A)]^2*√(X2+Y2)}

d2Y/dT2 = -V0*exp((sqrt(X^2+Y^2)-R)/A)*Y/{A*μ*[1+exp((sqrt(X^2+Y^2)-R)/A)]^2*√(X2+Y2)}

after arbitrarily setting (Eb*tau^2 / m0*a0^2) =1.

Solving the above expression for tau, we see that the one second is equivalent to 1.02E-22 seconds of simulation time.

To determine the initial conditions, we set t=0, rCM=0, and drCM/dt=vCM=0.

This gives

r1,0 = -(m2/m1)*r2,0

and

v1,0 = -(m2/m1)*v2,0 ,

or in component form:

x1,0 = -(m2/m1)*x2,0

y1,0 = -(m2/m1)*y2,0

vx1,0 = -(m2/m1)*vx2,0

vy1,0 = -(m2/m1)*vy2,0


Setting either component of x=0 makes the y-component a maximum. For y we choose 1.

Similarly this would make the y-component of velocity zero, the the x-component would be a maximum.

For vx we chose 0.085.

 

Translations

Code Language Translator Run

Software Requirements

SoftwareRequirements


Android iOS Windows MacOS
with best with Chrome Chrome Chrome Chrome
support full-screen? Yes. Chrome/Opera No. Firefox/ Samsung Internet Not yet Yes Yes
cannot work on some mobile browser that don't understand JavaScript such as.....
cannot work on Internet Explorer 9 and below

 

Credits

Javier E.Hasbun and Benjamin E Hogan; Fremont Teng; Loo Kang Wee

end faq

Sample Learning Goals

[text]

For Teachers

 

Instructions

Atomic Mass and A Field Boxes

 
Typing in these field boxes will set their atomic mass and A respectively.
 

Toggling Full Screen

Click anywhere in the panel to toggle full screen.
 

Play/Pause and Reset Buttons

 
Plays/Pauses and resets the simulation respectively.

Research

[text]

Video

[text]

 Version:

Other Resources

[text]

end faq

Testimonials (0)

There are no testimonials available for viewing. Login to deploy the article and be the first to submit your review!

Submit your review

Please deploy the article before submitting your review!

You have to login first to see this stats.

1 1 1 1 1 1 1 1 1 1 Rating 0.00 (0 Votes)
Parent Category: 06 Quantum Physics
Category: 02 Nuclear
Hits: 1874