Download ModelDownload Sourceembed

About

 

For Teachers

Translations

Code Language Translator Run

Software Requirements

SoftwareRequirements


Android iOS Windows MacOS
with best with Chrome Chrome Chrome Chrome
support full-screen? Yes. Chrome/Opera No. Firefox/ Samsung Internet Not yet Yes Yes
cannot work on some mobile browser that don't understand JavaScript such as.....
cannot work on Internet Explorer 9 and below

 

Credits

Andrew Duffy; lookang; tina

end faq

http://iwant2study.org/lookangejss/04waves_12generalwaves/ejss_model_Wave_representations_v5/Wave_representations_v5_Simulation.xhtml

 Apps

https://lh3.googleusercontent.com/ekTMibjFXDKKxPqAgGJlTP3ct7C_5S-P3c82LMMSbJd_hIwzhOlIvxxHPC_jnZTstg=w300-rw

https://play.google.com/store/apps/details?id=com.ionicframework.waverepresentation&rdid=com.ionicframework.waverepresentation 

Description

Introduction
Wave is an oscillation accompanied by a transfer of energy that travels through medium (space or mass)
Waves consist, instead, of oscillations or vibrations (of a physical quantity), around almost fixed locations
This simulation is on transverse wave where disturbance creates oscillations that are perpendicular to the propagation of energy transfer.
The equation for wave is A sin ( wt +kx + ϕ)
where 
A is the maximum amplitude of the wave, maximum distance from the highest point of the disturbance in the medium (the crest) to the equilibrium point during one wave cycle.
w is is the angular frequency
t is time
k is is the wavenumber
x is the position
ϕ is the is the phase constant

concepts illustrated in the simulations include
T is the time for one complete cycle of an oscillation of a wave
f is the number of periods per unit time (per second) and is related by T = 1/f
λ is the wavelength
v is the velocity of the wave travelling and is related by v= f λ
vtmax is the maximum transverse velocity of the wave particle that occurs at the displacement d =0.

 

Examples

EJSS wave representation model

Equation used to model the wave is \( y = A sin ( \omega t  - k x )  \)

Amplitude A

amplitude of wave = 0.18 m, maximum displacement from equilibrium position
http://iwant2study.org/ospsg/index.php/112
Direct Link

amplitude of wave = 0.20 m, maximum displacement from equilibrium position

run: Link1Link2

download: Link1,
source: 
Link1Link2

author: Andrew Duffy, lookang, tina

author EJS: Francisco Esquembre

wavelength λ

wavelength of wave = 1.70 m The wavelength λ

 wavelength is the distance between two sequential crests or troughs (or other equivalent points)

http://iwant2study.org/ospsg/index.php/112
Direct Link




wavelength of wave = 0.50 m The wavelength λ

 wavelength is the distance between two sequential crests or troughs (or other equivalent points)

run: Link1Link2

download: Link1Link2
source: 
Link1Link2

author: Andrew Duffy, lookang, tina

author EJS: Francisco Esquembre

Period T


period of wave = 3.00 s, The period T is the time for one complete cycle of an oscillation of a wave
http://iwant2study.org/ospsg/index.php/112
Direct Link


period of wave = 3.00 s, The period T is the time for one complete cycle of an oscillation of a wave

run: Link1Link2

download: Link1Link2
source: 
Link1Link2

author: Andrew Duffy, lookang, tina

author EJS: Francisco Esquembre

angular frequency f

The frequency f = 1/T  is the number of periods per unit time (per second) and is typically measured in hertz
http://iwant2study.org/ospsg/index.php/112
Direct Link
 
 

The frequency f = 1/T is the number of periods per unit time (per second) and is typically measured in hertz

run: Link1Link2

download: Link1Link2
source: 
Link1Link2

author: Andrew Duffy, lookang, tina

author EJS: Francisco Esquembre

 

angular velocity of wave ω


angular frequencyω  = 2.09 s, The angular frequencyω represents the frequency in radians per second.
http://iwant2study.org/ospsg/index.php/112
Direct Link

angular frequencyω  = 2.09 s, The angular frequencyω represents the frequency in radians per second.

run: Link1Link2

download: Link1Link2
source: 
Link1Link2

author: Andrew Duffy, lookang, tina

author EJS: Francisco Esquembre

phase difference ϕ

the phase of a vibration (that is, its position within the vibration cycle) ϕ measured in radians

taking ratio "ϕ/(2π)= Δt/T",  ϕ = 2π(2.5-0.75)/3 =3.7 rad approximately

 

 

wave speed v

sinusoidal waveform traveling at constant speed v is given by v = f λ
http://iwant2study.org/ospsg/index.php/112
Direct Link
 
 
 

sinusoidal waveform traveling at constant speed v is given by v = f λ

run: Link1Link2

download: Link1Link2
source: 
Link1Link2

author: Andrew Duffy, lookang, tina

author EJS: Francisco Esquembre

maximum transverse speed vmax

 
The maximum transverse velocity is vmax = Aω and it occurs when the particle on the wave travels passes through the equilibrium position
http://iwant2study.org/ospsg/index.php/112
Direct Link


The maximum transverse velocity is vmax = Aω and it occurs when the particle on the wave travels passes through the equilibrium position

run: Link1Link2

download: Link1Link2
source: 
Link1Link2

author: Andrew Duffy, lookang, tina

author EJS: Francisco Esquembre

 

reference:

http://weelookang.blogspot.sg/2011/04/ejs-open-source-wave-representations.html

Video

 

 

Versions

  1. http://weelookang.blogspot.sg/2015/08/ejss-wave-representation-model.html Blog post of JavaScript version of Wave Representations by Andrew Duffy and Loo Kang Wee
  2. http://weelookang.blogspot.sg/2011/04/ejs-open-source-wave-representations.html Blog post of Java version of Wave Representations by Andrew Duffy and Loo Kang Wee
  3. http://iwant2study.org/lookangejss/04waves_12generalwaves/ejs/ejs_model_Wave_representations_v5.jar Java version of Wave Representations by Andrew Duffy and Loo Kang Wee

Other Resources

  1. http://physics.bu.edu/~duffy/HTML5/wave_movie_and_graph.htmlby Andrew Duffy
  2. http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=2405.0 One dimensional moving wave y(x,t)=A sin(k*x-w*t) by  Fu-Kwun Hwang

 

end faq