Download ModelDownload Sourceembed

About

 

For Teachers

Translations

Code Language Translator Run

Software Requirements

SoftwareRequirements


Android iOS Windows MacOS
with best with Chrome Chrome Chrome Chrome
support full-screen? Yes. Chrome/Opera No. Firefox/ Samsung Internet Not yet Yes Yes
cannot work on some mobile browser that don't understand JavaScript such as.....
cannot work on Internet Explorer 9 and below

 

Credits

Carla Martín; Tan Wei Chiong; Loo Kang Wee

end faq

Sample Learning Goals

[text]

For Teachers

Heat conducts through solids at different rates, and is dependent on the thickness of the solid and the heat conductivity of the solid.

We call this a steady-state conduction if the temperature difference driving the heat transfer is constant. In this simulation, it is assumed that the left side of a three-layered solid is set at a constant 25°C and the right side is set at a constant 0°C.

This simulation assumes that there is no loss of heat from the system (i.e.: this is a closed system). There are 3 walls in the graph on the left, representing 3 different solids that the heat conducts through. The graph on the right plots the temperature-thickness graph, showing how the temperature changes through the solids, and color-coded to represent the solid the heat travels through at that point.

There are 6 sliders to adjust the thickness and conductivity of each wall at the top of the simulation.

Research

[text]

Video

[text]

 Version:

  1. http://weelookang.blogspot.com/2018/05/steady-state-heat-conduction-javascript.html
  2. http://www.euclides.dia.uned.es/simulab-pfp/curso_online/cap7_caseStudies/sec_heatWall.htm by Alfonso Urquia and Carla Martin-Villalba

Other Resources

[text]

end faq

1 1 1 1 1 1 1 1 1 1 Rating 0.00 (0 Votes)