About
1.3 a) Variation with time of energy in simple harmonic motion
If the variation with time of displacement is as shown, then the energies should be drawn as shown.
recalling Energy formula
PE = ½ k x2
in terms of time t,
x = x0 sin(ωt)
differentiating with t gives
v = v0 cos (ωt)
therefore, KE = ½ m v2= ½ m (v0 cos (ωt))2= ½ m (x02ω2)cos (ωt))2similarly
PE = ½ k x2= ½ (mω2 )(x0 sin (ωt))2= ½ m (x02ω2 )sin (ωt))2
therefore total energy is a constant value in the absence of energy loss due to drag (resistance)
TE = KE + PE = ½ m (x02ω2 )[cos2(ωt)
+ sin2(ωt))] = ½ m (x02ω2)

this is how the x vs t looks together of the energy vs t graphs

1.3.1 Summary
the table shows some of the common valuesgeneral energy formula | SHM energy formula | when t = 0 | when t = T/4 | when t = T/2 | when t = 3T/4 | when t = T |
KE = ½ m v2 | ½ m (x02ω2)cos (ωt))2 | ½ m (x02ω2) | 0 | ½ m (x02ω2) | 0 | ½ m (x02ω2) |
PE = ½ k x2 | ½ m (x02ω2)cos (ωt))2 | 0 | ½ m (x02ω2) | 0 | ½ m (x02ω2) | 0 |
TE = KE + PE | TE = ½ m (x02ω2) | ½ m (x02ω2) | ½ m (x02ω2) | ½ m (x02ω2) | ½ m (x02ω2) | ½ m (x02ω2) |
1.3.2 Model:
Translations
Code | Language | Translator | Run | |
---|---|---|---|---|
![]() |
Software Requirements
Android | iOS | Windows | MacOS | |
with best with | Chrome | Chrome | Chrome | Chrome |
support full-screen? | Yes. Chrome/Opera No. Firefox/ Samsung Internet | Not yet | Yes | Yes |
cannot work on | some mobile browser that don't understand JavaScript such as..... | cannot work on Internet Explorer 9 and below |
Credits
This email address is being protected from spambots. You need JavaScript enabled to view it.
end faq
Apps
https://play.google.com/store/apps/details?id=com.ionicframework.shm17app307408&hl=en
Other resources
end faq
Facebook Social Comments