03 Thermal Physics

Big Ideas 1. When a substance gains or loses heat, the substance may change its temperature, change its state, change its volume or change to a different substance. The kinetic model allows us to understand the macroscopic properties of matter and changes in its state in terms of its microscopic molecular structure and behavior. 2. Energy may be transferred through all materials and through free space (vacuum). Our understanding of the different mechanisms of heat transfer through different materials enables us to control and make use of heat transfer in many appliances and machines. 3. The internal energy of a body consists of the total kinetic energy and potential energy of the particles in the body. Changes in a body or a substance due to heat gain or heat loss may be explained by the change in its internal energy. 4. Thermodynamics is the study of the relationship involving heat, mechanical work and other aspects of energy and energy transfer. The first law of thermodynamics is a general statement of the law of conservation of energy that includes energy transfer through heat as well as mechanical work. The ideal gas equation gives the relationship of the pressure, volume, temperature, and the number of moles of a gas. This equation allows us to find the state of a gas in any situation.


Resources from adapted from Marion Birch, Ewa Debowska, Raimund Girwidz, Antje Kohnle,  Bruce Mason, Leopold Mathelitsch, Trevor Melder, Marisa Michelini,  Ivan Ruddock, Lorenzo Santi, Jorge Silva, Robert Sporken 


  1. STP ComPADRE Collection, Gould and Tobochnik.  This is a successful combination of a statistical mechanics textbook, a series of java simulations,  and a library of other statistical mechanics research and resources. Many simulations are developed specifically to support the work in the book. This material would have been rated excellent if there was a complete integration of the simulations with the text. The full text, by  chapter, with supplements, are at
  2. PHET Heat and Thermo. There are some excellent simulations on various topics, including ideal gases and chemical reaction rates. The simulations provide realistic virtual learning environments that are based on research on student learning. The simulations have teaching suggestions created by both teachers and the PHET project. The simulations do not include information about the models and physics used.
  3. Physics 2000 BEC, Martin Goldman. This is an example of the material that has been around for a long time but is still of note. The tutorial is written as a conversation between a professor and student regarding Bose‐Einstein condensation, with simple embedded interactive simulations illustrating such topics as laser and evaporative cooling. The material is very well constructed and readable.
  4.  Cannot find Hippocampus Thermodynamics, published by the Monterey Institute for Technology and Education This is a student tutorial designed with animations, text, audio, and questions. As a textbook‐like resource, it is not interactive or exploratory in an advanced way, but the requirements for students to answer questions on the materials covered as the presentation progress will help keep them engaged in the material. The use of multiple presentation modes and multiple representations has been proven to be effective to enhance learning.
  5.  Serway Media Library, published by Cengage Learning. This is a series of clear and simple animations and illustrations supporting an introductory physics textbook. Each of the animations focuses on a single topic and illustrate it through animations, text‐based explanations, and questions for students to answer. The clear design and documentation of the applets and physics are noteworthy.
  6. Carnot Cycle  Simulation and Lecture, Michael Fowler, UVA. This is an online set of notes covering the Carnot  Cycle, which in turn is part of a larger set of notes on thermodynamics. The Flash animation showing the operation of the cycle is a useful illustration of the topics covered. The animation allows minimal adjustment of the parameters for the cycle, limiting the student engagement and exploration of the topic. The power of this material is the combination of the clear didactic resource illustrated by the operating animation. 
  7. Kyle Forinas Physlet‐based  Thermodynamics Questions. This resource consists of a set of questions motivating student exploration of thermodynamics concepts, illustrated by java simulations. The parameters in the simulations are set for each question but are modified to help students understand the properties covered. The question sequences for the different topics are well designed and the illustrations add to the conceptual nature of the questions. The reviewers felt that some of the illustrations could have a little more physics included, tips for using this material in class would be helpful and found a few spelling and grammatical errors. 
  8.  Ideal Gas Simulation, Michael  Abraham & John Gelder. This simulation was also rated highly in the last thermodynamics review. It provides a gas simulation with the ability to change all the various parameters and plot a wide range of relations between thermodynamic quantities. What makes this material most noteworthy, however, is the set of student activities and explorations included with the simulation. These can be used by instructors in class as written, or as a starting point for creating their own activities. Learners accessing this resource on their own will have a complete learning activity available. 
  9. Ideal Gas Simulation, Paul Falstad. This is an excellent example of a kinetic theory simulation. It is noteworthy for the level of control and the different output information provided. The color coding of atoms by energy and a similar color coding used for the heater/cooler in the system is noteworthy.  Although it does not include any pedagogical suggestions, it includes a range of set‐up options that encourage the exploration of certain important topics. Like most of Falstad’s simulations, the output is somewhat qualitative with the units not given, but unlike most of these simulations, there is no information included on the physics model used. The source code is available for download. 
  10. Ideal Gas Remote Controlled  Lab, TU‐Berlin. This is a remote lab where students can run thermodynamic processes in real-time on real gas. The reviewer was unable to run the lab because of registration and log‐in problems. The experiment includes both a data‐taking interface and a video stream of the experiment. The data can be saved and analyzed by students. It includes links to simulations and tutorials to help students prepare for the laboratory, but there are not teaching or learning aids included. 
  11. Virtual Chemistry Experiments. This is a series of tutorials, or learning progressions, on topics gasses and chemistry. The experiments are a bit difficult to run at times. Perhaps very good, or good. Chemistry focus so there are some physics mistakes in the material, but overall it can be useful for thermodynamics classes.
  12. The Expert System for Thermodynamics, S. Bhattacharjee. This was rated Excellent in our last review, but the reviewers this year were less impressed. They felt that the presentation was much more useful for engineering students or teachers, the main audience for the site. The presentation was confusing and disorganized. However, there are lots of problems available for use, some with answers and solutions available for instructors. 
  13. Rossman‐Chance Statistics Applet  Collection, Beth Chance and Rossman. This is a collection of applets designed for statistics education. The collection itself is aimed at a different audience, but some will be useful to help students understand the meaning of probability and how statistical results are dependent on numbers of samples. This shows the possibilities for the use of resources from other disciplines to help support physics students. 
  14. NTNUJAVA Virtual Physics  Laboratory, Fu‐Kwan Hwang. The NTNU materials are considered classic simulations covering a  wide range of topics. The thermodynamics simulations are somewhat limited, but the Ideal Gas  Process simulation is unique in the ways it is designed to address student misconceptions of state variables and process variables. The constant display of changes in energy and entropy will help students distinguish between path‐dependent and path‐independent properties. This has been found by several researchers to be a major problem with student understanding of thermal physics. 
  15. ISLE Thermodynamics Explorations,  Eugenia Etkina. This material provides a set of short learning cycles on basic Ideal Gas Law physics, supported by video‐based experiments. Students are asked to predict and explain. This material is not as complete as in other topics, but it gives an example of the context necessary for pedagogically useful YouTube Physics. 
  16. Thermal  Conductivity, published by the National STEM Centre. This is another excellent example of a  small video‐based resource to help elicit and address student concepts in physics. This one in  particular considers the difference between “feeling hot and cold” and thermal conductivity.  The video includes a break to have students predict the outcome of the experiment
1 1 1 1 1 1 1 1 1 1 Rating 0.00 (0 Votes)

1 1 1 1 1 1 1 1 1 1 Rating 0.00 (0 Votes)