Breadcrumbs

 

About

The MOE Innergy (HQ) Awards is a reward scheme: 

  • to recognize individuals and teams with innovative ideas and who have spent time developing, testing and/or implementing them;
  • to recognize individuals and teams that have come up with innovations that have brought about significant benefits; and
  • to encourage more MOE officers to be innovative and creative in the work place.

What does the Award offer?
Besides the recognition and pride that come with getting this award, there is also the monetary reward component. There are five categories of award with varying amounts of monetary rewards:


INNERGY (HQ) AWARDS
PLATINUM AWARDS ARE FOR
Innovation that involves fundamental breakthrough in products/services/processes and created new and significant value-add to stakeholders previously not possible.

GOLD AWARDS ARE FOR
Development of innovative and effective products/services/processes with significant value-add to stakeholders.

SILVER AWARDS ARE FOR
Innovative, effective and significant enhancements of products/services/processes

BRONZE AWARDS ARE FOR
Innovative enhancements to existing products/services/processes

COMMENDATION AWARDS ARE FOR
Effective and practical ideas that improve existing products/services/processes

Criteria / Considerations

  • Is the idea unique and special?
  • Does the idea create new values / opportunities for MOE?
  • Does it contribute to the MOE mission?

How are the winners selected?
All applications will go through a selection process with an evaluation panel consisting of middle management from various divisions. The recommendations of the panel will constitute ODD’s final recommendation of winners to DM.  Applications are evaluated based on their quality and level of innovativeness, thus there will be no differentiation in award value between Individual submissions and Team submissions. 
Shortlisted applicants will be required to attend a brief interview session with the evaluation panel,

Members

Lawrence Wee

Jimmy Goh

Charles Chew

Kwan Yew Meng

Nomination

Type of innovation

  • New product offering that is unique and creates significant value to education e.g. Implementation of Synthetic Turf System in Schools – Synthetic fields give schools greater flexibility in scheduling Physical Education lessons, and field sports and games without having to worry about over-use affecting the condition of the field.
  • New way of doing things that is unique and creates significant value to education e.g. Research Activist Attachment Scheme – The Research Activist attachment scheme partners teachers with education researchers and MOE officers where they receive professional support and capacity building through consultation and special skills training


Download provided by Dropbox
For ease of seeding, scaling up and sustaining educational practices for the benefit of all humankind. Each computer model is created by their respective authors and need to be credited on your website for future sharing! Creative commons attribution licensed.
Updated 2021 to JavaScript versions, click on the pages and find the download button to get the models

  1. https://iwant2study.org/ospsgx/index.php/interactive-resources/physics/02-newtonian-mechanics/08-gravity/241-gravity09 ejs_KeplerSystem3rdLaw03.jar Kepler Solar System Model (Timberlake & Wee, 2011)
  2. https://iwant2study.org/ospsgx/index.php/interactive-resources/physics/02-newtonian-mechanics/08-gravity/62-gravity10 ejs_EarthAndSatelite.jaGeostationary Satellite around Earth Model (Esquembre & Wee, 2010) 
  3. https://iwant2study.org/ospsgx/index.php/interactive-resources/physics/02-newtonian-mechanics/08-gravity/410-gravity11a ejs_GField_and_Potential_1D_v7wee.jaOne Dimensional Gravitational Model (Duffy & Wee, 2010a)
  4. https://iwant2study.org/ospsgx/index.php/interactive-resources/physics/02-newtonian-mechanics/08-gravity/63-gravity11 https://iwant2study.org/ospsgx/index.php/interactive-resources/physics/02-newtonian-mechanics/08-gravity/385-gravity11g split into 2 versions ejs_GFieldandPotential1Dv7EarthMoon.jar One Dimension Gravitational Moon-Earth Model (Duffy & Wee, 2010b)






Abstract
Studying physics of very large scale like the solar system is difficult in real life, using telescope on clear skies over years. We are a world-first to create 4 well designed gravity computer models to serve as powerful tools for students’ active inquiry, based on real data, syllabus-customized, free and rapidly-prototyped with Open-Source-Physics researchers-educators. Pilot research suggests students’ enactment of investigative learning like scientist is now possible, where gravity-physics ‘comes alive’. Scaling up through teacher leadership approach includes nexus MOEHQ to 167 schools, NRF-MOE-eduLab 5 schools, Physics-Senior-Teachers network 47 schools, 6 national-international conferences, and scholarly journal and digital libraries publications.

Description of innovation
Problem Identification and Awareness of Existing Solutions
A. What was the unique challenge or problem that led you to come out with this solution?
B. Are you aware of any existing practices or solutions that might address your problem? Why have you not adopted any of these, but chose to come out with your own idea instead?

A. Unique and truly fundamental breakthrough
Imagine sending students into outer space to collect gravitational scientific data and visualize the planets in the solar system (see Figure 1), or be in outer space just outside Earth’s atmosphere to visualize geostationary satellites (see Figure 2). How about science laboratory toolkit that allows students to investigate the gravitational effects of isolated mass that cannot be observe on Earth (see Figure 3) or visit the Earth’s Moon to launch a rocket out into space to investigate what is the minimum kinetic energy required to escape the Moon’s and Earth’s gravity pull (see Figure 4)? 

Figure 1.    Kepler Solar System Model (Timberlake & Wee, 2011) with actual astronomical data built into the simulation, with realistic 3D visualization, (radius of planets such as Earth, rE and another planet for comparison  r,  and time t for determination of period of motion, T) data for inquiry learning and to situate understandingdownload: 
ejs_KeplerSystem3rdLaw03.jar
     

 

Figure 2.    Geostationary Satellite around Earth Model (Esquembre & Wee, 2010) suitable for inquiry learning through different mode =1 to 7, with Geo Stationary checkbox option, 3D visualization, customized with Singapore as a location position for satellite fixed about a position above the earth with period 24 hours, same rotation sense on the equator plane. ejs_EarthAndSatelite.jar
Figure 3.    One Dimensional Gravitational Model (Duffy & Wee, 2010a) suitable for investigative inquiry learning through data collection, customized with syllabus learning objectives such as gravitational strength g, gravitational potential φ when one or both masses M1 and M2 are present with a test mass m. Superimpose are the mathematical representations, vector presentation of g, based on current Newtonian model of gravity. ejs_GField_and_Potential_1D_v7wee.jar
Figure 4.    One Dimension Gravitational Moon-Earth Model (Duffy & Wee, 2010b) suitable for investigative inquiry learning, further customized to allow the experiencing of an Advanced Level examination question June 87 /II/8. Data are based on real values where students can play and experience physics otherwise difficult to related to examination question. ejs_GFieldandPotential1Dv7EarthMoon.jar

It would be a great financial burden to space shuttle classroom full of students into space and not forgetting a potentially dangerous journey without oxygen and in extreme cool temperatures.
Thus, we believe that there is justification to ‘bring’ the planets in the solar system and other outer space environments into the classroom of typical schools and put the students in a position to conduct virtual experiments using teacher-researcher created computer models (Psycharis & Aspaite, 2008), or in short, simulations.

In addition, our computer models are unique solutions to classroom learning because they are:

  1. Realistic Models: they are designed based on data collected from NASA, Wikipedia pages on planets and they are widely accepted as accurate and appropriate models by the Open Source Physics (OSP) researcher community (Belloni, Christian, & Mason, 2009; Christian, Esquembre, & Barbato, 2011).
  2. Low-cost and customized according to our syllabus to address the four difficult concepts in gravitation commonly encountered by our students: A series of customized computer models as shown in Figure 1, Figure 2, Figure 3 & Figure 4 are created to be flexible, customizable and tailored to the teachers’ interests, needs and pedagogical approach and flavor (Esquembre, 2002) through collaborative lesson co-design process between 2 teachers without additional financial funding from institutions. We used a commonly used among physics professors free authoring tool called Easy Java Simulation (Esquembre, 2004, 2010a) created by the OSP community.
  3. Innovative Global Community Product and Process: Not one but four computer models in a decentralized innovation (Ito, 2011) were rapidly created, deployed, improved and  fluidly supported by research community through the internet. There are about 65 computer models covering different topics in Physics created in this innovative process, all free of charge and probably well used around the world to improve physics by inquiry.   

mirror here for ease of downloading for sharing.https://sites.google.com/site/lookang/gravity-yjc
ejs_users_sgeducation_lookang_EarthAndSatelite04.jar
View  Download
ejs_users_sgeducation_lookang_GField_and_Potential_1D_v2wee.jar
View  Download
ejs_users_sgeducation_lookang_GFieldandPotential1Dv2EarthMoonwee.jar
View  Download
ejs_users_sgeducation_lookang_KeplerSystem3rdLaw01.jar
View  Download


B.  Awareness of existing practice
Existing practice(s) include 

  1. B1.    Structure learning from visiting websites to collect data as in Figure 17.
  2. B2.    Watching video about the planets that lacks critical interactivity necessary for investigative learning as in Figure 18.
  3. B3.    Scaled real life models as in Figure 19 are expensive and prone to wear and tear, lack scientific data necessary for inquiry learning such as missing key variables like time lapsed, ability to create a new planet etc.
  4. B4.    Free software like, Solar System 3D Simulator by Science Fair Projects World (Figure 20) 3D Solar System by H.Tingstrom (Figure 21), Google Earth Real-time satellites by Google (Figure 22) but they lack scientific data necessary for inquiry learning such as missing key variables like time lapsed, ability to create a new planet etc.   
  5. B5.    Paid Software such as Gravity simulator by Uranisoft (Figure 23) http://www.uranisoft.com/gravity/ is a 2D visualization tool that sells for \(15 to \)45 US dollars per license and is designed for windows XP. We were not able to evaluate the FULL software.
  6. B6.    Researcher created free software such as My Solar System by PhET (Figure 24) http://phet.colorado.edu/en/simulation/my-solar-system is able to simulate lots of systems but not the same models as our own customized to Singapore Advanced Level Physics Syllabus.
  7. Thus, we have justified our claim that is not possible to enable self directed (Tan, Shanti, Tan, & Cheah, 2011) inquiry learning (MOE, 2011), a key initiative from Ministry of Education (MOE) with existing practices listed above B1 to B3 due to lack of interactivity and scientific data and existing practices above point B4 to B6, does not allow teachers to customize the models, thus unable to use them specifically for curriculum learning outcomes .

We harness the power of the pull (Hagel III, Brown, & Davison, 2010) and create these 4 and another about 61 (not reported here) computer models learning through the internet with physicists of the world, instead of planning and outsource the creation of computer models to vendors at high cost and later faced scaling up (Chris Dede, n.d) issues, potential copyrights infringement etc.


Conceptualisation & Implementation
C.    What was the process your team took to conceptualize and develop the innovation? Were the methods, rationale, or concepts sound and based on evidence-based research?
D.    What steps did your team take to implement the innovation?

C. Rigor of research and deliberation
The process to conceptualize and develop the innovation started in 2007 when Loo Kang found the open source physics community and through his teacher leadership (MOE, 2009b), with the view to bring world class OSP computer models into Singapore and the world’s classrooms. 
Evidence-based research can be found from many journals in the effective use of computers as simulations (Choi & Gennaro, 1987; Christian & Esquembre, 2007; Clariana, 1989; Esquembre, 2004; Fiolhais & Trindade, 1998; F. K. Hwang & Esquembre, 2003; Lee, 2009; Lee, Guo, & Ho, 2008; Rieber, 1996; Spernjak, Puhek, & Sorgo, 2010; Tomshaw, 2006; Trindade, Fiolhais, & Almeida, 2002; Wong, Sng, Ng, & Wee, 2011). 
Recent advances of use of computer model research by the PhET project at the University of Colorado (W. Adams et al., 2008; W. K. Adams, 2010; McKagana et al., 2008; K. Perkins et al., 2006; K. K. Perkins, Loeblein, & Dessau, 2010; PhET, 2011; Weiman & Perkins, 2005; C. E. Wieman, Adams, Loeblein, & Perkins, 2010; Carl E. Wieman, Adams, & Perkins, 2008; Carl E. Wieman, Perkins, & Adams, 2008) supports our research on computer models. (Ohio-State-University, 2010) recently “found that people who used computer simulations to learn about moon phases understood the concepts just as well -- and in some cases better -- than did those who learned from collecting data from viewing the moon”, this seems to suggest it is likely our research on gravity system could possibly lead to better conceptual understanding as well since the Solar System and Earth-Moon System content knowledge is closely related to their study. 
We immerse in discussions forums mainly on NTNU Java Virtual Lab (F.-K. Hwang, 2010) and OSP (Christian, 2010) and network learn in these communities (Hord, 2009). This is how we initiated teacher-lead process in network learning with the world’s best computational physicists as in Figure 5 since 2007 and lesson intervention in 2011.

Figure 5.    Simplified timeline showing research and development at NTNU Java Virtual Lab (F.-K. Hwang, 2010) and OSP (Christian, 2010) in 2008 to 2010 and intervention and sharing on ICT connection edumall in 2011, research journal publication at Institute of Physics - Physics Education planned 2012.

 

 

 

We also submit our Digital computer models to the Open Source Physics Library (peer-reviewed by Physics Professors) based in USA as well as publishing journal papers in Institute of Physics (IOP) Physics Education journal (see Figure 5) based in Europe, ensuring research rigor and acceptance by the Physics research community.
Furthermore, educational research and computer models from the OSP community provided suitable ‘templates’ for our computer models to be derived or remixed from, in some way ‘guaranteed’ scientific validity in our models. 
We are pleased to report that OSP recently received the Science Prize for Online Resources in Education (SPORE) Prize (Christian, et al., 2011) honored by Science Magazine established to encourage innovation and excellence in education, in the use of high-quality on-line resources by students, teachers, and the public in the world. This is a piece of good news for us too as we are active contributor(s) to the OSP digital library since 2009 with 10 out of the 550 computer models/resources shared world-wide through the OSP website for free, benefiting humankind regardless of race, language or religion.


D. Effectiveness of addressing problem
Steps innovation on each of the 4 computer models, are highlighted in brief as below.

D1.    Kepler System Model (Timberlake, 2010) by Professor of Physics, Department of Physics, Astronomy, and Geology, Berry College, USA served as the template for our Kepler Solar System Model (Timberlake & Wee, 2011) (see Figure 6).

Figure 6. our customized model (Timberlake & Wee, 2011) (right)
Figure 6.    Kepler System Model (Timberlake, 2010) (left)









Notice our model is focused and can simulate all planets moving at the same time,  better graphics of the planets etc.

Innovation/Contribution includes 

  • Discovered a bug in the period of motion, solved it and improved (Timberlake, 2010) contributing to/with the OSP community.
  • Added other planets in our solar system absent in previous model by (Timberlake, 2010) such as Uranus, Neptune and Pluto using real life astronomy data from NASA.
  • Added realistic pictures of planets for better associated learning.
  • Re-programmed such that all planets will move together instead of only 3 planets as in (Timberlake, 2010).
  • Made the data like radius of orbits and time of orbits clearly noticeable for self directed inquiry.
  • Contributed and accepted by Wikipedia community the texts write-up and animated pictures of our model, benefiting global audience.


D2.    Earth and Moon Model (Esquembre, 2010b) by Professor of Mathematics, University of Murcia, Spain, served as the template for our Geostationary Satellite around Earth Model (Esquembre & Wee, 2010) (see Figure 7).


Figure 7. our customized model (Esquembre & Wee, 2010) (right)
Figure 7.    Earth and Moon Model (Esquembre, 2010b) (left)



Notice the customization created to suit our own learning and teaching objectives, with references made to geographic location of Singapore.

Innovation/Contribution includes:

  • Discovered a bug in the web deployment of Java 3D, solved it and improved (Esquembre, 2010b) with the OSP community
  • Added menu of different cases of geostationary orbits, with axis of rotation, time of motion for investigative, messing around (Jonassen, Howland, Marra, & Crismond, 2008) learning
  • Re-programmed such that laws of physics is still obeyed and added common misconception un-likely orbits where physics laws are not obeyed
  • Co-designed activity with school to further suit and enhance learning


D3.    Point Charge Electric Field in 1D Model (Duffy, 2009) by Professor of Physics, Department of Physics, Boston University, USA served as the template for our One Dimensional Gravitational Model (Duffy & Wee, 2010a) (see Figure 8). 


Figure 8.our customized model (Duffy & Wee, 2010a) (right)
Figure 8.    Point Charge Electric Field in 1D Model (Duffy, 2009) (left)

 

 

 












notice play button is previous not available and additional potential V or φ concept

Innovation/Contribution includes:

  • Added potential V or φ concept with mathematical representation for conceptual referencing to pen paper learning
  • Converted from electrical concepts to gravitational concepts by adding gravitational constant previous missing to create new model or knowledge, and all are based on real life data
  • Re-programmed equation of motion to the test mass with that laws of physics obeyed for better sense making while playing with the model
  • Co-designed activity with school to further suit and enhance learning

D4.    Point Charge Electric Field in 1D Model (Duffy, 2009) by Professor of Physics, Department of Physics, Boston University, USA served as the template for our One Dimensional Gravitational Moon-Earth Model (Duffy & Wee, 2010b) (see Figure 9).



Figure 9. our customized model (Duffy & Wee, 2010b) (right)
Figure 9.    Point Charge Electric Field in 1D Model (Duffy, 2009) (left)





Notice real astronomical data are programmed as that the values reflect actual numerical calculated from actual experimental and theoretical experiments. 

 Innovation/Contribution includes:

  • Added on to (Duffy & Wee, 2010a), with real life data of Earth and Moon, drawn to scale etc.
  • Added menu for investigation of launching test masses from the surface of the Moon, or Earth or a position of zero gravity constant, g.
  • Co-designed activity with school to enhance learning customized to Advanced Level examination question June 87 /II/8, to bring textbook context to life.



Thus, we have elaborated on why our solutions (4 computer models) and process to create the solutions standing on the shoulder of OSP giants, is a fundamental breakthrough on existing practices in MOE.


Impact and Effectiveness of Solution, and Benefits to Stakeholders
E.    What are some of the qualitative feedback or quantitative results that have come out from your innovation? 
F.    How has your innovation benefited your intended recipients or stakeholders? How effective was your innovation in solving your initial problem? 

E. Evidence of benefits to stakeholders 

E1: Learners’ Qualitative Evidence:
We include excerpts from the qualitative survey results and informal interviews with the students to give some themes and insights into the conditions and processes during the laboratory lessons. Words in brackets [ ] are added to improve the readability of the qualitative interviews.

IMPROVED VISUALIZATION (2D, 3D and cannot see in real life)  AND SCIENTIFIC VIEW 

  • it make[s] the theory much more easier to understand, especially when it is difficult to conduct experiments to prove the newton's law of gravitation and the Kepler's third law, for everything occurs in space.
  • "The ICT lessons make it easier for us to depict the motion of objects in a clearer manner and drawing the diagrams in questions easier. As some of the programmes possess 3-dimensional views, we are able to view the motion of the object in 3-dimensional, and hence, further explains the question with the use of ICT programmes."
  • Sometimes, it is hard to just visualize, it makes us understand and clarify our doubts about different scenarios in gravitational field.
  • The lessons allow me to understand the movement of a satellite which we cannot see normally in real life and are unable to comprehend from the 2D diagram. Thus, the 3D simulation allows me to learn better.
  • "able to see the big picture and view the concept in real life situation when in use. able to realize the practical purposes of having such physics concepts."


SELF DIRECTED, FUN, BEYOND SYLLABUS AND SUITABLE PACE

  • These lessons allow me to learn physics concepts better by using applications in the future. Thus, with the help of these applications and programs, i will be able to learn physics concepts through self-learning in future. Hence, it is good.
  • Allows [us] to get a better understanding of the topic as stimulation aids in visualizing the various questions easily, thus, able to solve the question. The lessons give me a clearer explanation of how things works thus, allowing me to understand.
  • it is manageable as i am able to make full use of the computer skills and technology to come about the learning concepts in physics.


LESSON IS JUST GREAT

  • The lesson is just great.
  • We should have more of ICT lesson
  • mr goh did a good job in conducting the lesson. the IT was also simple enough to understand.


E2: Learners’ Quantitative Evidence:
Quantitative data is collected based on a class of 20 students who undergo the lessons.


 Table 1: Quantitative Data collected based a sample class size of (N=20).

  1 Strongly Disagree 2 3 4 5Strongly Agree
1. I enjoyed learning about physics through this lesson 0% 10 20 40 30
2. To what extent did the lesson meet schools’, teachers’ and pupils’ needs 0 10 15 60 15
3. How much did this lesson prepare you for life instead of just for examinations 15 0 40 30 15
SDL1. How much did this lesson allow for 1. Ownership of Learning - self-directed learning? 0 10 25 45 20
SDL2. How much did this lesson allow for 2. Management and Monitoring of Own Learning - self-directed learning? 0 10 40 30 20
SDL3. How much did this lesson allow for 3. Extension of Own Learning - self-directed learning? 5 10 30 30 25
CoL1. How much did this lesson allow for 1. Effective Group Processes - collaborative learning? 0 10 25 60 5
CoL2:How much did this lesson allow for 2. Accountability of Learning - collaborative learning? 0 5 30 55 10


 70% of the students self reported enjoying the lesson and another 75% felt the lesson exceeded their schools, teachers and their own learning needs.  We speculate that we can increase the 45% that was reported after these lessons in ‘prepare them for life than just for examinations’ by creating learning tasks closer to the thinking process as a scientist than in its current tutorial question format which is more likely to lack challenging tasks. 
On average, at least 50% of the students felt that the lessons allow for self directness and 65% for collaboration to solve problems which we feel are very encouraging data.

E3: Learners’ Performance Evidence:
Some of the performances of the learning tasks are shown below as indications of the benefits to the students. Figure 10 gives the readers a mental picture of what the learning with computer models can look like, where a teacher facilitates groups of students, conducting inquiry physics through computer models.
Figure 11, Figure 12, Figure 13 and Figure 14 are artifacts of performance of learning on each of the computer models to give the readers an idea of the kind of thinking and reflection after interacting with the models. Typically in other classes, students rely heavily on their own imagination and mathematical skills to make sense of the theory of gravity. 



Figure 10.    Typical classroom setup where students self direct the inquiry learning collaboratively or otherwise, using the computer models as referents (C Dede, Salzman, Loftin, & Sprague, 1999), can served as powerful learning tools when well facilitated by teacher(s). Picture by Goh G.H.

 

Figure 11.    Sample of a student’s work where the table above is based on data collection with interacting with the Kepler Solar System computer model, making sense of the meaning of period T and the mean radius of the orbits of the planets for subsequent calculations in tutorial question to have a deepened personal experience.

Notice the period of the planets T and the mean radius r are now determined based on student’s own understanding, rather than static data to be analyze (traditional teaching method), the data collection adds richness of experiential meaning due to first person experiencing with the model.

Words like “mean” radius have no textual meaning unless the computer mimics actual planet distance from Sun to planet as a distance that is always changing, thus, “mean” implies average.  


Figure 12.    Sample of a student’s work where the activity on the worksheet guides the intended learning outcome, to bring to the cognitive attention of the learners certain characteristics of the motion to reflect and make meaning of. The ability to view from different perspective from outer space helps students to visualize and the different options emphasize investigation rather than memorization.


Notice the students’ answers are now actually based on the acts of scientific inquiry being scientist themselves, rather than the memorization of facts (traditional teaching method).

Making logical conclusions based on student-lead evidence based inquiry on the models.


Figure 13.    Sample of a student’s work where the activity on the worksheet guides the intended learning outcome, to allow students to take on the role of scientist to investigate through the computer model and make sense of the lines of gravitational and potential versus distance and play with the model to appreciate the meaning of these abstract concepts.

Notice meaning making is based on verifiable computer models as referents like invisible concepts like gravitational constant g and potential ϕ.

World view of 2 masses with well designed superimposed scientific representations of gravitational constant and potential gives students experience to make meaning of the scientific terms.


Figure 14.    Sample of a student’s work where the activity on the worksheet guides the intended learning outcome, to allow students to take on the role of scientist to investigate through the computer model and make sense of meaning of escape velocity and play the model to appreciate the meaning of these abstract concepts.


 Notice students’ answers are now richer in expressing what they have experience rather than imagination.

Students usually have little means to understand escape velocity, now the calculations made by the students are merely ways to verify the theoretical mathematical models in the computer models, the can see for themselves the cause of effects of different velocities launched from the Moon, in this case. The deeper conceptual understanding made possible in our computer models that other methods cannot achieve.


 E4: Teacher-Researchers’ Performance Evidence:
Teacher Goh G.H. has benefited from networked learning with Wee L.K. and is more confident in 1) designing inquiry worksheets 2) embedding computer models into tutorial questions for inquiry physics 3) lead sharing in 1st Academy Symposium 2011 and 4th Instructional Program Support Group 2012 (see list of conferences in G4).
E5: School Benefit Evidence:
Yishun Junior College (YJC) has benefited from Goh G.H. undertaking to pilot 1 to 1 learning with laptops (Dwyer, 1994), a YJC initiated project and these 4 computer models can serve as means to support the enactment of self directed (Tan, et al., 2011) and collaborative learning (Chai & Tan, 2010) and inform future school led initiatives.

Summary of E1 to E5:
From E1 to E3, we believe the benefits to students are to allow them take on the role of scientists (Jan, Chee, & Tan, 2010), to conduct their own guided inquiry learning for efficient use of curriculum time and promoting self direction as life long learners (MOE, 2009a). Our solutions substantially address the challenge of allowing students to make sense of and ‘bring’ very large gravity systems such as Solar System Model (Figure 1), Earth and Satellite Model (Figure 2), Two Mass Model science laboratory toolkit (Figure 3) and Moon-Earth Model (Figure 4), into the hands of ordinary students, in any classroom, in any part of the world.
E4 and E5 illustrate how Teacher(s) and School(s) also benefit from exploring using free computer models to bring physics learning alive through technology.



 Long-term Sustainability & Potential for Scaling Up
G.    Are there plans in place for the process or solution you have developed to be sustainable (beyond the initial implementers)? 
H.    Is the solution you have developed suitable for other recipients besides the ones you have tested it on (eg. public, parents)? 

G. Evidence of planned sustainability 

Figure 15.    Conceptual framework for scaling up through Teacher Leadership Approach, In MOE, through G1: MOE-CPDD-ETD edTech in curriculum ,G2: NRF-MOE eduLab001 project, G3: MOE-AST physics teachers network, G4: conference papers local and overseas and G5 ICT connection edumall. Globally building on G5: Open Source Physics Global research and publishing in G6: Physics Education journal, and remix work(s) adopted by G7: Wikipedia.


G1: MOE-ETD-ETC Education Technology in curriculum:
Planned Audience: ALL 167 secondary schools and junior colleges in Singapore
A new Education Technology in curriculum (ETC) section in ETD structure of the re-organization lead by DGE Ms Ho Peng, articulates a nexus in ETD to connect CPDD and ETD. As ETD restructure to impact curriculum directly, we have plans to infuse these 4 and others OSP computers models and curriculum materials into the syllabus (O and A levels) and teaching and learning guides. Working as one MOE, leaders in ETD, CPDD and AST expressed interest to scale up computer models in Singapore Physics Education in all 167 Secondary Schools and Junior Colleges that offer Physics.

G2: NRF-MOE eduLab001 project: 
Planned Scalability: 1 Integrated Programme School and 4 Junior Colleges
National Research Fund (NRF) & MOE funded NRF2011-eduLab001 Java Simulation Design for Teaching and Learning project (Wee, 2010) 
A project consists of 5 schools, River Valley High, Yishun Junior College, Serangoon Junior College, Innova Junior College & Anderson Junior College to pilot lesson packages developed from January 2012 to December 2013, lead by the same group of innovator-teachers.

G3: AST network of 47 Schools and 62 Senior, Lead and Master teachers
Emails follow-up were sent through the Academy Master, Lead and Senior Teacher Networks = 62 and number of different schools = 47 with our gravity simulations, as a demonstration of the ease of information transference. 
Thus, the computer models and its curriculum materials are given to teachers, making them  Aware, step 1 of the pathman-PRECEED model of knowledge translation (Davis et al., 2003). 

G4: International and Local Conference Sharing 
Upcoming

  1. Goh G.H., Tan H.K., Wee L.K. (2012, 18 January) Promoting independent learning in the topic of Gravitation using Easy-Java Simulations @4th Instructional Programme Support Group (IPSG) Sharing, Anderson Junior College, Singapore
  2. Wee, L.K. (2012, 04-08 February). Physics Educators as Designers of Simulation using EJS part 2. Paper presented at the American Association of Physics Teachers National Meeting Conference: 2012 Winter Meeting, Ontario, California, USA.
  3. Wee L.K., Lee T.L. Goh G.H. (2012, 27-30 March) Physics by Inquiry with Simulations @3rd International Conference on Teaching and Learning with Technology, iCTLT 2012, Singapore
  4. Wee, L.K., Xu W.M., Lee T.L. Phua Damien, Goh G.H., Goh K.S, Ong C.W., Ng S.K. Lim Kenneth, Ng Nathanael (2012, 01-06 July). Physics Educators as Designers of Simulation using EJS in NRF-MOE eduLab001 project. Paper presented at the 1st World Conference on Physics Education: in 2012, Istanbul, Turkey (pending paper submission)

Completed

  1. Wee L.K. Lee T.L. Goh G.H. (2011, 10 November) Physics by Inquiry with Simulations Design for Learning @The Academy Symposium, Academy of Singapore Teachers, Singapore
  2. Wee, L. K. (2010, 20 July). Physics Educators as Designers of Simulation using Easy Java Simulation. Paper presented at the American Association of Physics Teachers National Meeting Conference: 2010 Summer Meeting, Portland, Oregon, USA. [PPT]


Actual Audience Physics by Inquiry with Simulations Design for Learning @The Academy Symposium: 14 schools, 25 teachers 
We gave all the 25 participants (consisting of Academy Singapore Teachers, Curriculum and Planning Division officers & many schools teachers) the 4 gravity computer models, 1 collision computer model (combined sharing) and PowerPoint presentation with links to download the curriculum as well as other models from OSP and NTNU Digital Library. This is evidence of benefits to stakeholders in all MOE adequately as we also introduced the larger pools of computer models to suit teachers’ time frame for innovative use of computer models.
Below are some of the comments from the participants

  1. hello A-team,thank you for your sharing. hope to put it to use soon (in 2012). have a great holiday 2011.
  2. Thanks so much and have a good weekend.
  3. Thanks for sharing your ppt and also congratulations on the new book on physics that was launched. Charles gave me a copy and I finished it yesterday at the conference itself. It is a good read and a great resource to the teachers.
  4. Thanks for your generous sharing of resources. Will definitely keep you posted if I can design any worksheets with your applets.
  5. Yes. I really did. It is an eye-opener for me especially since I was teaching Physics earlier in the year.Thank you very much


We speculate a good number of the 83 teachers (accounted for duplicate names from Table 3 and 4) from the about 55 different schools (accounted for duplicate schools from Table 3 and 4) would agree that the material shared is useful, may be adopt and adapt to suit their own context. 
In addition, the scaling up plan is to impact curriculum syllabus and teaching guides so that ALL 167 secondary schools and junior colleges offering Physics will benefit from our computer models curriculum. 
Thus, this and other parts of the write-up, are evidences of planned sustainability beyond these 4 gravity models as we have already created about in total 65 computer models, probably already used in classrooms in Singapore and beyond. Teachers can easily sustained the use of these computer models and start their own contribution to the global OSP digital library as membership is by contribution, and not limited to nationality.

Accurate as of time of write-up, teachers from the 5 schools in eduLab project and the 55 schools in networks (face to face and emails) are very excited about our computer models and are in discussions to use and research on computer models.

G5: NTNU Java Digital Library and edumall ICT connection
Downloadable materials through Public internet access and eduMall (Goh & Wee, 2011a, 2011b, 2011c, 2011d)

  1. Goh, J., & Wee, L. K. (2011a). Virtual Laboratory Gravitational Field & Potential of 2 Mass Model  Retrieved 17 Nov, 2011, fromhttp://ictconnection.edumall.sg/cos/o.x?ptid=711&c=/ictconnection/ictlib&func=view&rid=722 &http://weelookang.blogspot.com/2010/08/ejs-open-source-gravitational-field.html
  2. Goh, J., & Wee, L. K. (2011b). Virtual Laboratory Gravitational Field & Potential of Earth and Moon  Retrieved 17 Nov, 2011, fromhttp://ictconnection.edumall.sg/cos/o.x?ptid=711&c=/ictconnection/ictlib&func=view&rid=718 &http://weelookang.blogspot.com/2010/08/ejs-open-source-gravitational-field_10.html
  3. Goh, J., & Wee, L. K. (2011c). Virtual Laboratory of Geostationary Satellite around Earth Model  Retrieved 17 Nov, 2011, fromhttp://ictconnection.edumall.sg/cos/o.x?ptid=711&c=/ictconnection/ictlib&func=view&rid=720 &http://weelookang.blogspot.com/2010/07/ejs-open-source-geostationary-satellite.html
  4. Goh, J., & Wee, L. K. (2011d). Virtual Laboratory of Kepler's Third Law Solar System Model Retrieved 17 Nov, 2011, fromhttp://ictconnection.edumall.sg/cos/o.x?ptid=711&c=/ictconnection/ictlib&func=view&rid=718 &http://weelookang.blogspot.com/2011/06/ejs-open-source-kepler-3rd-law-system.html


 Table 2: Number of views and downloads from edumall ICT connection website and NTNU JAVA Computer Model Digital Library 

  eduMall ICT Connectionviews / downloaddata until December 06, 2011 NTNU Digital Libraryviews / downloaddata until December 06, 2011
Virtual Laboratory Gravitational Field & Potential of 2 Mass Model 6 / 18since November 09, 2011 2 104 / 57since August 02, 2010
Virtual Laboratory Gravitational Field & Potential of Earth and Moon 6 / 20since November 09, 2011 2 689 / 64since August 10, 2010
Virtual Laboratory of Geostationary Satellite around Earth Model 7 / 20since November 09, 2011  3 441 / 99since June 30, 2010
Virtual Laboratory of Kepler's Third Law Solar System Model 13 / 39since November 09, 2011 785 / 46since June 23, 2011
Total 32 / 97views / download 9 019 / 266views / download


 There is a total of 97 downloads by eduMall registered users, of the curriculum materials shared in eduMall ICT connection for the period 26 days (exclusive of start and end dates) of November 09, 2011 to December 06, 2011.
This 97 downloads and the face to face sharing(s) and email through academy physics senior teachers, gives a clear signal of our scaling up in Singapore schools. 

Globally, a total of 9 019 views and 266 downloads of our computer models has been recorded. 

G5: Open Source Physics community and Digital Library Collection
We are in the process of submitting our Digital computer models to the Open Source Physics Library (peer-reviewed by Physics Professors) like previous models as listed below: 

  1. Hwang, F.K., & WEE, L. K. (2011). Direct Current Electrical Motor Model. Retrieved fromhttp://www.compadre.org/Repository/document/ServeFile.cfm?ID=11529&DocID=2476
  2. Hwang, F.K, & WEE, L.K. (2011). Newton's Cradle Applet [Computer software]. Retrieved July 26, 2011, fromhttp://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=2195.0
  3. WEE, L.K (2011). Up and Down Bouncing Ball Model [Computer software]. Retrieved April 23, 2011, fromhttp://www.compadre.org/osp/document/ServeFile.cfm?ID=10817&DocID=2186&Attachment=1
  4. WEE, L.K., & Esquembre, F. (2010). Lorentz force on a current carrying wire java applet [Computer software]. Retrieved April 23, 2011, from http://www.compadre.org/Repository/document/ServeFile.cfm?ID=10543&DocID=2053
  5. Hwang, F.K., & WEE, L.K. (2010). Cyclotron in 3D Model (Version 10/12/2010) [Computer software]. Retrieved April 23, 2011, from http://www.compadre.org/osp/items/detail.cfm?ID=10527
  6. Hwang, F.K., WEE, L.K. & Christian, W (2009). Vernier Caliper Model [Computer software]. Retrieved April 23, 2011, fromhttp://www.compadre.org/Repository/document/ServeFile.cfm?ID=9707&DocID=1445
  7. Hwang, F.K., WEE, L.K. & Christian, W (2009). Micrometer Model [Computer software]. Retrieved April 23, 2011, fromhttp://www.compadre.org/Repository/document/ServeFile.cfm?ID=9422&DocID=1315
  8. Hwang, F.K. & WEE, L.K (2009). Blackbody Radiation Spectrum Model [Computer software]. Retrieved April 23, 2011, fromhttp://www.compadre.org/Repository/document/ServeFile.cfm?ID=9387&DocID=1292


Thus, the innovation has already taken root in the Global OSP community and continue to innovate beyond these 4 gravity computer models and potentially all Physics models, see  OSP website of 550 computer models/resources shared so far. We have in total about 65 computer models/resources that can be downloaded for free from NTNU Java Virtual Laboratory (F.-K. Hwang, 2010)
Vasudeva Rao Aravind, Professor of Physics from Pennsylvania State University, USA recently shared some of the computer models we help create in similar process as the 4 gravity models, see Figure 16. He has a great news to share in his facebook message to Loo Kang which the Mexico teachers who attended Professor Vasu’s workshop were “very very excited” by our computer models. These benefits are evidence of stakeholders and the world beyond its initial intent.

Figure 16.    Vasudeva Rao Aravind, Professor of Physics from Pennsylvania State University, USA recently shared some of the computer models we help create in similar process as the 4 gravity models in a workshop in Mexico based on a invited by the American Association of Physics Teachers, Mexico Chapter.


G6: Research Journal Publication
We are in the process of submitting our manuscripts to Institute of Physics like our previous journal papers.

  1. Wee L.K. (2012) One-Dimensional Collision Carts Computer Model and its Design Ideas for Productive Experiential Learning Physics Education XX(X), XXX (accepted for publication by Institute of Physics provisional February 2012)
  2. Wong, D., Sng, P. P., Ng, E. H., & Wee, L. K. (2011). Learning with multiple representations: an example of a revision lesson in mechanics. Physics Education, 46(2), 178. http://www.compadre.org/OSP/items/detail.cfm?ID=10817 [Draft PDF]


Thus, the innovation writings will be peer-reviewed by Physics Professor(s) and live on in scholarly academic communities where we also hope to also make our computer models and curriculum materials downloadable from OSP website, to benefit humankind for the world. 
Our solution is therefore well grounded in evidence-based research and we have the rigor and deliberation in the implementation process.

H: Scalability beyond intended recipients

H1: Primary and Lower Secondary Science and Mathematics syllabus
These solutions can be scaled up to Secondary schools and Primary schools curriculum as I have organized in my blog http://weelookang.blogspot.com/p/physics-applets.html and similar innovation can be scaled to Mathematics using free tools like Geogebra or Easy Java Simulation.

H2: International Adoption of our work(s) by Wikipedia community, serving millions of viewers in the world including Singapore public and parents.

In addition, Wikipedia has accepted animated graphics and supporting texts of our models as valuable and accurate graphics and that should be also taken into account, in terms of the scale up possibilities in helping to inform millions of viewers visiting Wikipedia.

The Wikipedia pages should be viewed through the actual website to witness the effects of the animation with accompanying texts as the word document is unable to render the animation gif files below.
http://en.wikipedia.org/wiki/Gravity_well
http://en.wikipedia.org/wiki/Mars
http://en.wikipedia.org/wiki/Solar_System
http://en.wikipedia.org/wiki/Geostationary_orbit
For the complete list of the contribution to Wikipedia please go to 
http://commons.wikimedia.org/w/index.php?limit=500&user=Lookang&title=Special%3AListFiles%2FLookang

Conclusion:
We argue for computer models as suitable physics learning environments for the following three reasons: 1) to visualize physics through multiple representations (Wong, et al., 2011) especially for invisible and very large scale concepts 2) ease of theory generation from ‘real life annoyances free’ (Lenaerts & Wieme, 2004), accurate computer models, 3) mathematical analysis & modeling (D. Brown & Christian, 2011; F. K. Hwang & Esquembre, 2003) to deepen inquiry. 
We demonstrate 1) Four computer models on gravity (Duffy & Wee, 2010a, 2010b; Esquembre & Wee, 2010; Timberlake & Wee, 2011) as innovative learning tools 2) a viable research-validated, global community innovative process using free tool(s) to create computer models to enrich learning experiences and achieve student-directed inquiry physics with simulations. 
We report the computer models and curriculum materials that we believe are at the long tail (J. S. Brown & Adler, 2008, p. 26) of innovation and we aim to be agent of change (Ho, 2010) for improving educational services provided by school educators, changing the way we make Physics come “alive” in schools and at home.
We have given evidences that we have four research grounded lesson packages with computer models, are not just unsubstantiated ideas but a USA government funded innovation supported by NSF DUE-0442581 based on the OSP community’s research work. 

What does MOE gain financially?
By celebrating this infant innovation in Singapore, MOE stands to benefit by rationalization of the traditional millions of dollars allocated to educational Research and Development program such as those in reported in mass media like Virtual Worlds@MOE> and Next Generation Text Book NGIT. The savings to MOE in this innovation could run up to $100 000 for these 4 computer models and potentially tens of millions of dollars could be better spent when such computer models or software development process are embraced to 167 schools. 

What does Singapore gain?
Thus, we have positioned our innovation, both product and process that support professional learning of teachers (MOE, 2009b) with teachers as curriculum leaders and designers of simulations. While standing of the shoulders of giants, the global OSP community, we too, bring computer models into classrooms all around the world benefiting all humankind regardless of race, language or religion, with Singapore as an innovation leader-partner for the world.   


5. Annex Figures

not included 

6. Annex Table
Table 3: Number of Academy Master, Lead and Senior Physics Teacher Networks = 62 and number of different schools = 47 emailed with details on our free gravity computer models and curriculum.

not included 

Table 4: Participants and their school/MOEHQ with total participants = 25 and number of different schools = 14 as in indication of the recipients of scale up.

not included 

7. Reference

  1. Adams, W., Reid, S., LeMaster, R., McKagan, S., Perkins, K., Dubson, M., & Wieman, C. (2008). A Study of Educational Simulations Part II--Interface Design. Journal of Interactive Learning Research, 19(4), 551-577.
  2. Adams, W. K. (2010). Student engagement and learning with PhET interactive simulations. NUOVO CIMENTO- SOCIETA ITALIANA DI FISICA SEZIONE C, 33(3), 21-32.
  3. Belloni, M., Christian, W., & Mason, B. (2009). Open Source and Open Access Resources for Quantum Physics Education. [Abstract]. Journal of Chemical Education, 86(1), 125-126.
  4. Brown, D., & Christian, W. (2011, Sept 15-17). Simulating What You See. Paper presented at the MPTL 16 and HSCI 2011, Ljubljana, Slovenia.
  5. Brown, J. S., & Adler, R. P. (2008). Minds on Fire: Open Education, the Long Tail, and Learning 2.0. EDUCAUSE Review, 43(1), 16-20,22,24,26,28,30,32.
  6. Chai, C., & Tan, S. (2010). Collaborative Learning and ICTICT for self-directed and collaborative learning (pp. 52–69).
  7. Choi, B.-S., & Gennaro, E. (1987). The effectiveness of using computer simulated experiments on junior high students' understanding of the volume displacement concept. [Article]. Journal of Research in Science Teaching, 24, 539-552.
  8. Christian, W. (2010). Open Source Physics (OSP)  Retrieved 25 August, 2010, from http://www.compadre.org/osp/
  9. Christian, W., & Esquembre, F. (2007). Modeling Physics with Easy Java Simulations. Physics Teacher, 45(8), 475-480.
  10. Christian, W., Esquembre, F., & Barbato, L. (2011). Open Source Physics. Science, 334(6059), 1077-1078. doi: 10.1126/science.1196984
  11. Clariana, R. B. (1989). Computer Simulations of Laboratory Experiences. Journal of Computers in Mathematics and Science Teaching, 8(2), 14-19.
  12. Davis, D., Davis, M. E., Jadad, A., Perrier, L., Rath, D., Ryan, D., . . . Zwarenstein, M. (2003). The case for knowledge translation: shortening the journey from evidence to effect. BMJ, 327(7405), 33-35. doi: 10.1136/bmj.327.7405.33
  13. Dede, C. (n.d). Exploring the Process of Scaling Up. Harvard University.  Retrieved fromhttp://isites.harvard.edu/fs/docs/icb.topic86033.files/Process_of_Scaling_Up_-_T561_scaling.pdf andhttp://www.peecworks.org/PEEC/PEEC_Reports/051F8D99-007EA7AB.14/The%20Process%20of%20Scaling%20Up.pdf
  14. Dede, C., Salzman, M., Loftin, R., & Sprague, D. (1999). Multisensory Immersion as a Modeling Environment for Learning Complex Scientific Concepts. Computer Modeling and Simulation in Science Education.
  15. Duffy, A. (2009). Point Charge Electric Field in 1D Model. Retrieved fromhttp://www.compadre.org/Repository/document/ServeFile.cfm?ID=9411&DocID=1574
  16. Duffy, A., & Wee, L. K. (2010a). Ejs Open Source Gravitational Field & Potential of 2 Mass Java Applet. Singapore. Retrieved from http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=1921.0
  17. Duffy, A., & Wee, L. K. (2010b). Ejs Open Source Gravitational Field & Potential of Earth and Moon Java Applet. Singapore. Retrieved from http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=1924.0
  18. Dwyer, D. (1994). Apple Classrooms of Tomorrow: What We've Learned. Educational Leadership, 51(7), 4-10.
  19. Esquembre, F. (2002). Computers in physics education. Computer Physics Communications, 147(1-2), 13-18.
  20. Esquembre, F. (2004). Easy Java Simulations: A software tool to create scientific simulations in Java. Computer Physics Communications, 156(2), 199-204.
  21. Esquembre, F. (2010a). Easy Java Simulations  Retrieved 20 October, 2010, from http://www.um.es/fem/Ejs/Ejs_en/index.html
  22. Esquembre, F. (2010b). Ejs Open Source Earth and Moon Model (Version 1.0). Spain. Retrieved fromhttp://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=1830.0
  23. Esquembre, F., & Wee, L. K. (2010). Ejs Open Source Geostationary Satellite around Earth Java Applet (Version 1.0). Singapore. Retrieved from http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=1877.0
  24. Fiolhais, C., & Trindade, J. (1998). Use of Computers in Physics education. Proceedings of the" Euroconference'98–New Technologies for Higher Education.
  25. Goh, J., & Wee, L. K. (2011a). Virtual Laboratory Gravitational Field & Potential of 2 Mass Model  Retrieved 17 Nov, 2011, fromhttp://ictconnection.edumall.sg/cos/o.x?ptid=711&c=/ictconnection/ictlib&func=view&rid=722 andhttp://weelookang.blogspot.com/2010/08/ejs-open-source-gravitational-field.html
  26. Goh, J., & Wee, L. K. (2011b). Virtual Laboratory Gravitational Field & Potential of Earth and Moon  Retrieved 17 Nov, 2011, fromhttp://ictconnection.edumall.sg/cos/o.x?ptid=711&c=/ictconnection/ictlib&func=view&rid=718 andhttp://weelookang.blogspot.com/2010/08/ejs-open-source-gravitational-field_10.html
  27. Goh, J., & Wee, L. K. (2011c). Virtual Laboratory of Geostationary Satellite around Earth Model  Retrieved 17 Nov, 2011, fromhttp://ictconnection.edumall.sg/cos/o.x?ptid=711&c=/ictconnection/ictlib&func=view&rid=720 and http://weelookang.blogspot.com/2010/07/ejs-open-source-geostationary-satellite.html
  28. Goh, J., & Wee, L. K. (2011d). Virtual Laboratory of Kepler's Third Law Solar System Model Retrieved 17 Nov, 2011, fromhttp://ictconnection.edumall.sg/cos/o.x?ptid=711&c=/ictconnection/ictlib&func=view&rid=718 andhttp://weelookang.blogspot.com/2011/06/ejs-open-source-kepler-3rd-law-system.html
  29. Hagel III, J., Brown, J. S., & Davison, L. (2010). The power of pull: How small moves, smartly made, can set big things in motion: Basic Books (AZ).
  30. Ho, P. (2010). Agents Of Change. Challenge  Retrieved 20 December, 2011, fromhttp://www.challenge.gov.sg/magazines/archive/2010_01/snapshots.html
  31. Hord, S. M. (2009). Professional Learning Communities: Educators Work Together toward a Shared Purpose. Journal of Staff Development, 30(1), 40-43.
  32. Hwang, F.-K. (2010). NTNU Virtual Physics Laboratory  Retrieved 20 October, 2010, fromhttp://www.phy.ntnu.edu.tw/ntnujava/index.php
  33. Hwang, F. K., & Esquembre, F. (2003). Easy java simulations: An interactive science learning tool. Interactive Multimedia Electronic Journal of Computer - Enhanced Learning, 5.
  34. Ito, J. (2011). Creating the Future at the MIT Media Lab. Journalism and Media Studies Centre Hong Kong: Hong Kong University.
  35. Jan, M., Chee, Y. S., & Tan, E. M. (2010). Changing Science Classroom Discourse toward Doing Science: The Design of a Game-based Learning Curriculum. Paper presented at the Proceedings of the 18th International Conference on Computers in Education, Putrajaya, Malaysia.
  36. Jonassen, D., Howland, J., Marra, R., & Crismond, D. (2008). Meaningful learning with technology: Pearson/Merrill Prentice Hall.
  37. Lee, Y. (2009). Using computer simulations to facilitate conceptual understanding of electromagnetic induction.  Ph.D., State University of New York at Buffalo, United States -- New York. Retrieved from http://proquest.umi.com/pqdweb?did=1757065961&Fmt=7&clientId=20333&RQT=309&VName=PQD 
  38. Lee, Y., Guo, Y., & Ho, H. (2008). Explore Effective Use of Computer Simulations for Physics Education. The Journal of Computers in Mathematics and Science Teaching, 27(4), 443.
  39. Lenaerts, J., & Wieme, W. (2004). Developing ICT based Learningware for Physics. Paper presented at the New Educational Benefits of ICT in Higher Education, Rotterdam: Erasmus Plus BV.
  40. McKagana, S. B., Perkins, K. K., Dubson, M., Malley, C., Reid, S., Lemaster, R., & Wieman, C. E. (2008). Developing and researching PhET simulations for teaching quantum mechanics. [Article]. American Journal of Physics, 76(4/5), 406-417. doi: 10.1119/1.2885199
  41. MOE. (2009a). Speech by Mr S Iswaran, Senior Minister of State, Ministry of Trade and Industry and Ministry of Education, at the International Conference on Teaching and Learning with Technology (iCTLT) on Thursday, 4 March 2010, at 9.00am at Suntec Singapore International Convention and Exhibition Centre  Retrieved 20 October, 2010, fromhttp://www.moe.gov.sg/media/speeches/2010/03/04/speech-by-mr-s-iswaran-at-ictlt-2010.php
  42. MOE. (2009b). Teachers — The Heart of Quality Education  Retrieved 20 October, 2010, fromhttp://www.moe.gov.sg/media/press/2009/09/teachers-the-heart-of-quality.php
  43. MOE. (2011). Handbook for Teaching Secondary Physics C. Y. Lau, D. J. S. Wong, C. M. K. Chew & J. K. S. Ong (Eds.),   Retrieved from http://subjects.edumall.sg/subjects/slot/u1025854/Handbook%20for%20Teaching%20Secondary%20Physics.pdf
  44. Ohio-State-University. (2010). Computer simulations can be as effective as direct observation at teaching students  Retrieved December 30, 2011, from http://www.sciencedaily.com/releases/2010/02/100211151653.htm#.TvI1FNd2314.twitter
  45. Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, S., Wieman, C., & LeMaster, R. (2006). PhET: Interactive Simulations for Teaching and Learning Physics. The Physics Teacher, 44(1), 18-23. doi: 10.1119/1.2150754
  46. Perkins, K. K., Loeblein, P. J., & Dessau, K. L. (2010). Sims For Science. [Article]. Science Teacher, 77(7), 46-51.
  47. PhET. (2011). The Physics Education Technology (PhET) project at the University of Colorado at Boulder, USA fromhttp://phet.colorado.edu/en/simulations/category/physics
  48. Psycharis, P. S., & Aspaite, G. (2008). Computerized Models in Physics Teaching: Computational Physics and ICT. International Journal of Learning, 15(9).
  49. Rieber, L. (1996). Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games. Educational Technology Research and Development, 44(2), 43-58. doi: 10.1007/bf02300540
  50. Spernjak, A., Puhek, M., & Sorgo, A. (2010). Lower Secondary School Students' Attitudes Toward Computer-Supported Laboratory Exercises. International Journal of Emerging Technologies in Learning, 23-26.
  51. Tan, S. C., Shanti, D., Tan, L., & Cheah, H. M. (2011). Self-directed learning with ICT: Theory, Practice and Assessment. MOE (Ed.)   Retrieved from http://ictconnection.edumall.sg/ictconnection/slot/u200/mp3/monographs/self-directed%20learning%20with%20ict.pdf
  52. Timberlake, T. (2010). Kepler System Model (Version 1.0). Retrieved from http://www.compadre.org/Repository/document/ServeFile.cfm?ID=9757&DocID=1451
  53. Timberlake, T., & Wee, L. K. (2011). Ejs Open Source Kepler 3rd Law System Model Java Applet (Version 1.0). Singapore. Retrieved from http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=2225.0
  54. Tomshaw, S. G. (2006). An investigation of the use of microcomputer-based laboratory simulations in promoting conceptual understanding in secondary physics instruction. Ph.D. 3227372, Drexel University, United States -- Pennsylvania. Retrieved fromhttp://proquest.umi.com/pqdweb?did=1232426311&Fmt=7&clientId=20333&RQT=309&VName=PQD 
  55. Trindade, J., Fiolhais, C., & Almeida, L. (2002). Science learning in virtual environments: a descriptive study. [Article]. British Journal of Educational Technology, 33(4), 471-488.
  56. Wee, L. K. (2010, 03 November). eduLab mass briefing on possible ideation options for eduLab projects sharing on Easy Java Simulation and Tracker. Jurong Junior College, 2010, from http://weelookang.blogspot.com/2010/10/edulab-mass-briefing-at-jurong-junior.html
  57. Weiman, C., & Perkins, K. (2005). Transforming Physics Education. Physics Today, 58(11), 36-40.
  58. Wieman, C. E., Adams, W. K., Loeblein, P., & Perkins, K. K. (2010). Teaching Physics Using PhET Simulations. Physics Teacher, 48(4), 225-227.
  59. Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PhET: Simulations That Enhance Learning. [Article]. Science, 322(5902), 682-683.
  60. Wieman, C. E., Perkins, K. K., & Adams, W. K. (2008). Oersted Medal Lecture 2007: Interactive simulations for teaching physics: What works, what doesn't, and why. American Journal of Physics, 76(4), 393-399. doi: 10.1119/1.2815365
  61. Wong, D., Sng, P. P., Ng, E. H., & Wee, L. K. (2011). Learning with multiple representations: an example of a revision lesson in mechanics. Physics Education, 46(2), 178.

PowerPoint Presentation

prepare a PPT

innergy award gravity phyiscs by inquiry


copy of the submission:
https://docs.google.com/a/moe.edu.sg/viewer?a=v&pid=explorer&chrome=true&srcid=0B6Uop3OE_O32NDhmZWY5NzUtNmI5ZS00YWVjLWExY2YtZDQwOWUzNTZiZDEw


Update 29 Feb 2012

Dear Sir/Madam,

1.       Congratulations, Innergy (HQ) Awards 2012 Winners! This year, we received a total of 53 submissions and the panel has selected a total of 19 winners (2 Gold, 2 Silver, 7 Bronze, 8 Commendation) for 2012.

2.       Details of winners can be found in the table below:

 

S/N Division Project Title Award Type
1 ETD Bringing Innovative Ideas to Practice Through Propel-T Projects Gold
2 ETD & AST Gravity-Physics by Inquiry Gold

 

 


3. In addition to the Awards Trophy, a letter of appreciation personally endorsed by DGE will be sent to all participants. This letter of appreciation serves as an encouragement for all participants, to continue their innovative spirit.
4. As such, we would like to request that you fill in the attached document with the particulars of your team members by 5pm, 04 March,2012. 
• Include the names and the NRIC numbers of the members of your team. This is for us to bank in the prize money to the winning officers. 
• Ensure that the names of members, their information, and your project title are accurate. 
• Indicate to us how much prize money each team member should be allocated. 
• Verify that all the staff involved are employed by MOE. In the case that they are not, please indicate so, and nominate one other team member to receive the prize money on his/her behalf.
5. The Innergy (HQ) Awards 2012 will be presented during the MOE ExCEL FEST Awards Ceremony on 30 March 2012. We will provide you with more details regarding the Awards Ceremony soon.
6. The Innergy Secretariat would like to thank you for all the support you have given us, and we look forward to receiving your nominations next year for the Innergy (HQ) Awards 2013.

Ceremony

Figure 9a.Loo Kang receiving the gold innergy award from Minister Heng, photo (left) and 43 seconds of the Excel Fest 2012 Highlights video  http://www.youtube.com/watch?v=RCYTwADn8sE (right)

 

Figure 9b.Loo Kang receiving the gold innergy award from Minister Heng, photo (left) and 43 seconds of the Excel Fest 2012 Highlights video  http://www.youtube.com/watch?v=RCYTwADn8sE (right)
 
 


He has conducted many workshops and conference presentations to help teachers adopt the meaningful use of computer models in physics education. His significant contribution in the professional development of the Physics fraternity can be seen in a series of feature articles on his work. For example, MOE ASPIRE magazine (May 2012) (Figure 7), Lianhe Zaobao newspaper feature on Open Source Physics (Figure 8) and INNERGY GOLD award 2012 presented by Minister of Education, Heng Swee Keat (Figure 9). 

Video

 

 EF2012 Highlights by MOE Singapore Figure 9b.Loo Kang receiving the gold innergy award from Minister Heng, photo (left) and 43 seconds of the Excel Fest 2012 Highlights video  http://www.youtube.com/watch?v=RCYTwADn8sE (right)

 ExCEL Fest 2012 - Innergy Awards bMOE Singapore

MOE Publication Aspire Magazine

Short article on Innergy Project for ASPIRE magazine (May 2012)

 
Update 07 december 2012
http://intranet.moe.gov.sg/orgdevdiv/newsletter/Aspire%20May_12.pdf
http://intranet.moe.gov.sg/orgdevdiv/newsletter/Aspire%20May_12.pdf ASPIRE is a quarterly MOE HQ newsletter issue 16 May 2012 Page 2

Short article on Innergy Project for ASPIRE magazine (May 2012) Got an request from ASPIRE magazine! Thanks Bernice TEO for the invitation!Congratulations again on winning Gold for your Innergy Project on ‘Gravity-Physics By Inquiry’!
L to R: Yew Meng KWAN, Loo Kang WEE, Charles CHEW (absent: Jimmy Giam Hwee GOH). Picture by Wei Hao HO, Artwork by Claire Zixin HONG! edited
L to R: Yew Meng KWAN, Loo Kang WEE, Charles CHEW (absent: Jimmy Giam Hwee GOH). Picture by Wei Hao HO, Artwork by Claire Zixin HONG!

L to R: Yew Meng KWAN, Loo Kang WEE, Charles CHEW (absent: Jimmy Giam Hwee GOH). Picture by Wei Hao HO.

I  am an editorial member of ASPIRE (MOE HQ quarterly newsletter) and I am currently preparing for the upcoming issue of our ASPIRE magazine. We would like to showcase your team’s winning project in the May issue of the magazine.A brief format (100 words) would be: 
- What the project is about 
- Some insights gained during the course of work / about the team
- A photo (preferably of the team with the project) 
For your reference, past issues of ASPIRE newsletter can be viewed here. We hope to receive the article by 28 March, Wednesday (5pm) in time for the May 2012 issue. Thank you very much for your help. Please feel free to contact me should you have any queries.charles input
Gravity-Physics by Inquiry is a ground-up initiative led by Wee Loo Kang, Jimmy Goh, Kwan Yew Meng and Charles Chew that brings realistic, customized and research-validated computer models (also known as simulations) to the world. Our research suggests that these four computer models are appropriate laboratory environments that can provide the experience and context, essential for deepening students’ conceptual understanding of Physics through student-centric active learning. Students appreciate learning most when active inquiry is guided and simulations are simple and well designed. Most importantly, physics comes "alive" and is meaningfully fun to inspire curiosity and imagination.yew meng inputs
Gravity-Physics by Inquiry is a ground-up initiative led by Wee Loo Kang, Jimmy Goh, Kwan Yew Meng and Charles Chew that brings realistic, customized and research-validated computer models (also known as simulations) to the world. Our research suggests that these four computer models are appropriate laboratory environments that can provide the experience and context, essential for deepening students’ conceptual understanding of Physics through student-centric active learning. Students appreciate learning most when active inquiry is guided and simulations are simple and well designed with features like different scientific representations and visualizations. Most importantly, physics comes "alive" and is fun.lookang final version
Gravity-Physics by Inquiry is a bottom-up initiative led by Wee Loo Kang, Jimmy Goh, Kwan Yew Meng and Charles Chew that brings realistic, customized and research-validated computer models (also known as simulations) to the world. Our research suggests that these four computer models are appropriate laboratory environments that can provide the experience and context, essential for deepening students’ conceptual understanding of Physics through student-centric active learning. Students appreciate learning most when active inquiry is guided and simulations are simple and well designed with features like different scientific representations and visualizations. Most importantly, physics comes "alive" and is fun.Gravity-Physics by Inquiry is a bottom-up initiative led by Wee Loo Kang, Jimmy Goh, Kwan Yew Meng and Charles Chew that brings realistic, customized and research-validated computer models (also known as simulations) to the world. Our research suggests that these four computer models are appropriate laboratory environments that can provide the experience and context, essential for deepening students’ conceptual understanding of Physics through student-centric active learning. Students appreciate learning most when active inquiry is guided while interacting with well designed simulations with features like different scientific representations and visualizations. Most importantly, physics comes "alive" and learning is fun.
bernice edited version
Gravity-Physics by Inquiry is a bottom-up initiative led by Wee Loo Kang, Kwan Yew Meng, Charles Chew and Jimmy Goh to bring realistic, customized and research-validated computer models to the world. Our research suggests that these four computer models (also known as simulations) are appropriate laboratory environments that can provide the experience and context, essential for deepening students’ conceptual understanding of Physics through student-centric education. Students appreciate the self-direction and interactivity with computer models, different perspective visualization and scientific representations, and targeted, productive activities designed by the teachers. Most importantly, physics comes "alive" and is fun.
Submitted this:
Project:
Gravity-Physics by Inquiry is a bottom-up initiative lead by Loo Kang, Yew Meng, Charles Chew and Jimmy Goh to bring realistic, customized and research validated computer models for the world.
Insights:
Our research suggests these 4 computer models (also known as simulations) are appropriate laboratory environments that can provide the experience and context, essential for deepening student’s conceptual understanding of Physics through student-centric education. 
Students appreciate the self direction and interactivity with computer models, different perspective visualization and scientific representations, targeted productive activities designed by the teachers and most importantly, physics comes "alive" and is fun.
Thanks:
Open Source Physics Researchers.
Project:
Gravity-Physics by Inquiry is a bottom up initiative lead by Loo Kang, Yew Meng, Charles Chew and Jimmy Goh to bring realistic, customized and research community validated gravity computer models.
  1. Realistic Models: original models shared by Open Source Physics researchers, data verified from NASA and Wikipedia pages.
  2. Low-cost and Customized: remixed models shared by Loo Kang, customized to Singapore syllabus and address difficult concepts encountered by students, free of charge and probably well used around the world.
  3. Innovative Global Community Product and Process: rapidly created, deployed and improved fluidly supported by Open Source Physics research community through the internet.

Download and “Bring Alive” Gravity-Physics to your students! 
1. Lesson Package http://ictconnection.edumall.sg2. Computer Models http://weelookang.blogspot.com/2012/01/gravity-physics-by-inquiry-2012-innergy.htmlInsights:
Our research suggests these 4 computer models (also known as simulations) are appropriate laboratory environments that can provide the experience and context essential for deepening student’s conceptual understanding of Physics through student centric guided inquiry. 
Students especially appreciate the self directed interactivity with computer models, 2D and 3D visualization of the very large scale physics and the different scientific representational views, targeted productive activities designed by the teachers and most importantly, physics is "alive" and fun.
Kepler Solar System Model (Timberlake & Wee, 2011) with actual astronomical data built into the simulation, with realistic 3D visualization, (radius of planets such as Earth, rE and another planet for comparison  r,  and time t for determination of period of motion, T) data for inquiry learning and to situate understanding
Kepler Solar System Model (Timberlake & Wee, 2011) student conducting inquiry into the Kepler's Solar system. Picture by Goh G.H.
Kepler Solar System Model (Timberlake & Wee, 2011) student conducting inquiry into the Kepler's Solar system. Picture by Goh G.H.
Typical classroom setup where students self direct the inquiry learning collaboratively or otherwise, using the computer models as referents (C Dede, Salzman, Loftin, & Sprague, 1999), can served as powerful learning tools when well facilitated by teacher(s). Picture by Goh G.H.
Geostationary Satellite around Earth Model (Esquembre & Wee, 2010) suitable for inquiry learning through different mode =1 to 7, with Geo Stationary checkbox option, 3D visualization, customized with Singapore as a location position for satellite fixed about a position above the earth with period 24 hours, same rotation sense on the equator plane.
Geostationary Satellite around Earth Model (Esquembre & Wee, 2010) in classroom setting. Picture by Goh G.H.
One Dimensional Gravitational Model (Duffy & Wee, 2010a) suitable for investigative inquiry learning through data collection, customized with syllabus learning objectives such as gravitational strength g, gravitational potential φ when one or both masses M1 and M2 are present with a test mass m. Superimpose are the mathematical representations, vector presentation of g, based on current Newtonian model of gravity.
One Dimensional Gravitational Model (Duffy & Wee, 2010a) use in classroom setting. Picture by Goh G.H.
One Dimensional Gravitational Model (Duffy & Wee, 2010a) with student conducting active inquiry in the computer model supporting by the tutorial questions.Picture by Goh G.H.
One Dimension Gravitational Moon-Earth Model (Duffy & Wee, 2010b) suitable for investigative inquiry learning, further customized to allow the experiencing of an Advanced Level examination question June 87 /II/8. Data are based on real values where students can play and experience physics otherwise difficult to related to examination question.
One Dimension Gravitational Moon-Earth Model (Duffy & Wee, 2010b) students in active inquiry. Picture by Goh G.H.
One Dimension Gravitational Moon-Earth Model (Duffy & Wee, 2010b) students in active inquiry. Picture by Goh G.H.
One Dimension Gravitational Moon-Earth Model (Duffy & Wee, 2010b) students in active inquiry. Picture by Goh G.H.
One Dimension Gravitational Moon-Earth Model (Duffy & Wee, 2010b) students in active inquiry.Picture by Goh G.H.

Conference MPTL'18 Easy Java Simulation, an innovative tool for teacher as designers of gravity-physics computer model

MPTL'18 Easy Java Simulation, an innovative tool for teacher as designers of gravity-physics computer models

 
UPDATE: 11 sept 2013

PPT:
  1. latest https://www.dropbox.com/s/q9iwazheroaqwhc/MPTL18%20%2811%20Sept%202013%29.pptx
  2. https://dl.dropboxusercontent.com/u/44365627/conference/201309MPTL18/MPTL18.pptx
Sims:
Worksheets thanks to jimmy and stanley :)
  1. https://dl.dropboxusercontent.com/u/44365627/conference/201309MPTL18/SYM001b%202013%20Easy%20Java%20Simulation%20worksheet%20I%20%28Field%20strength%20%26%20Potential%2C%20Earth-Moon%20models%29%20-%20student%20copy.docx
  2. https://dl.dropboxusercontent.com/u/44365627/conference/201309MPTL18/SYM001b%202013%20Easy%20Java%20Simulation%20worksheet%20II%20%28Geostationary%20satellite%2C%20Kepler%20model%29%20-%20student%20copy.docx
  3. https://www.dropbox.com/s/5m7f11sl5saqpv7/2013%20H2%20Phy%20Topic%207%20Gravitational%20field%20-%20ICT%20inquiry%20worksheet%201%20on%20Field%20strength%20%26%20Potential%20%28Teacher%29.doc
  4. https://www.dropbox.com/s/e0lh183amlvp0gr/2013%20H2%20Phy%20Topic%207%20Gravitational%20field%20-%20ICT%20inquiry%20worksheet%202%20on%20Kepler%27s%20Third%20Law%20%28Teacher%29.doc
  5. https://www.dropbox.com/s/3fw6y9h774d9jd1/2013%20H2%20Phy%20Topic%207%20Gravitational%20field%20-%20ICT%20inquiry%20worksheet%203%20on%20Geostationary%20satellite%20%28Teacher%29.doc
  6. https://www.dropbox.com/s/uampgpp50ckl1gj/2013%20H2%20Phy%20Topic%207%20Gravitational%20field%20-%20Tutorial%20%28Teacher%29.doc
update 12 august 2013
The complete scientific program of the MPTL'18 conference is now available at the MPTL'18 webpage:http://mptl18.dia.uned.es/mptl18/program.htmlPDF: http://mptl18.dia.uned.es/mptl18/files/Detailed%20Program.pdf
Conference: 18th edition of the Multimedia in Physics Teaching and Learning Conference, MPTL18.Date: 09-13 September 2013
Venue: Madrid, Spain
Presentation Time: Day 1, PS1, 1130-1150
 

MPTL'18 Day 1 Parallel Session PS1
update ACCEPTED!Dear Mr./Ms./Dr. Wee,We are pleased to inform you that your work, titled Easy Java Simulation, an innovative tool for teacher as designers of gravity-physics computer models, has been accepted 
for the 18th Multimedia in Physics Teaching and Learning Conference (MPTL'18), 
to be held in Madrid next September.Please take into account the reviewers' comments when preparing your 
presentation for MPTL'18. All authors would be asked to send a paper about their 
work (of about 5 pages) a few months after the MPTL and a selected group of them 
will be published in a proceedings book.
----------------------- REVIEW 1 ---------------------
PAPER: 2
TITLE: Easy Java Simulation, an innovative tool for teacher as designers of gravity-physics computer models
AUTHORS: Loo Kang Lawrence Wee, Giam Hwee Jimmy Goh and Ee-Peow LimOVERALL EVALUATION: 2 (accept)
REVIEWER'S CONFIDENCE: 3 (medium)----------- REVIEW -----------
EJS is used to model gravity physics basing on astronomical data to support inquiry-centric problem solving. The authors have mentioned very positive reaction of students for such a kind of investigating learning. The model is still improving and can be downloaded from www page. I recommend the paper because of very interesting subject, which is really difficult for students, giving them the possibility to experience the gravity-physics.
In two sentences two words, (in parentheses) should be added:
1. Word problem solving 'pedagogy' is not only a pedagogical mismatch, sending students on field trips into outer-space (but) is also untenable from safety and economic standpoints. 
2. These new computer models serves to support the enactment of scientific work that are inquiry-centric and evidence-based that are more likely to promote enjoyment and inspire imagination having ‘experienced’ gravity-physics than traditional pen (and) paper problem solving.
----------------------- REVIEW 2 ---------------------
PAPER: 2
TITLE: Easy Java Simulation, an innovative tool for teacher as designers of gravity-physics computer models
AUTHORS: Loo Kang Lawrence Wee, Giam Hwee Jimmy Goh and Ee-Peow LimOVERALL EVALUATION: 2 (accept)
REVIEWER'S CONFIDENCE: 3 (medium)----------- REVIEW -----------
the subject is very limited (gravitation only); however the work seems to be really practical, some application of the well known software.
----------------------- REVIEW 3 ---------------------
PAPER: 2
TITLE: Easy Java Simulation, an innovative tool for teacher as designers of gravity-physics computer models
AUTHORS: Loo Kang Lawrence Wee, Giam Hwee Jimmy Goh and Ee-Peow LimOVERALL EVALUATION: 1 (weak accept)
REVIEWER'S CONFIDENCE: 5 (expert)----------- REVIEW -----------
Authors developed by means of EJS different tools to approach gravity with a inquiry method.
Simulations are not particular significant, but the proposed use is interesting for multimedia physics teaching/learning literature. The proposed use of the developed simulations in teacher education courses is very good.

Thank you for the reviews! :)


update 24 june 2013Please register by yourself, need credit to pay
315 euro
I choose dinner and tour too.Nº Tarjeta = 16 digit credit Card number
Caducidad Mes Año = Expiry Month Year
Cód. Seguridad = Cod. SecurityClick on Continur = ContinueEnd screen looks like this
i registered! http://mptl18.dia.uned.es/mptl18/registration.html
hotel: http://mptl18.dia.uned.es/mptl18/accomodation.html
This email address is being protected from spambots. You need JavaScript enabled to view it.
The conference will take place at an Associated Centre of UNED in Madrid. The Centre is very well situated; in c/ Tribulete 14, 28012 Madrid (GPS coordinates 40.408921,-3.702886 ; Google map) and can be easily reached from any of the hotels listed in the Accomodation section:
http://mptl18.dia.uned.es/mptl18/images/timetable.jpg
http://mptl18.dia.uned.es/mptl18/images/timetable.jpg
Check in 09 September Monday

Check out 13 September Friday
i am paper number 2!Conference Information
Acronym of the event: MPTL'18
Name of the event: 18th Multimedia in Physics Teaching and Learning Workshop
Web site: http://mptl18.dia.uned.es/mptl18
Submission page: https://www.easychair.org/conferences/?conf=mptl18
https://www.easychair.org/conferences/submission.cgi?a=4201614;track=68809;submission=1368946MPTL'18 (author)
New Submission Paper 2 MPTL'18 EasyChair
MPTL'18 Submission 2
**********************
If you want to change any information about your paper or withdraw it, use links in the upper right corner.
**********************
Paper 2 (abstract only)
Title: Easy Java Simulation, an innovative tool for teacher as designers of gravity-physics computer models
Keywords: 
computer model
simulation
interactive engagement
Abstract: In the study of Newtonian theoretical gravity concepts, the collection of scientific data is key to enactment of essential features of inquiry. Word problem solving 'pedagogy' is not only a pedagogical mismatch, sending students on field trips into outer-space is also untenable from safety and economic standpoints. Thus, researchers have created simulations to allow multiple visualization of these difficult concepts but they are usually meant for their own specific context.Therefore, our research and development is on customized computer models using the Easy Java Simulation authoring toolkit (Christian & Esquembre, 2012; Christian, Esquembre, & Barbato, 2011; Esquembre, 2010a; F. K. Hwang & Esquembre, 2003) that are not only tailored to the Singapore syllabus but will be free, based on astronomical data, supported with literature reviewed researched pedagogical features. These new computer models serves to support the enactment of scientific work that are inquiry-centric and evidence-based that are more likely to promote enjoyment and inspire imagination having ‘experienced’ gravity-physics than traditional pen paper problem solving.Pilot research suggests students’ enactment of investigative learning like scientist is now possible, where gravity-physics ‘comes alive’. We are still improving the features of these computer models through more students and teacher feedback and are downloadable from http://weelookang.blogspot.sg/2012/01/gravity-physics-by-inquiry-2012-innergy.html.We hope more teachers will find the simulations useful in their own classes and further customized them so that others will find them more intelligible and contribute back to the wider educational fraternity to benefit all humankind.download:https://dl.dropbox.com/u/44365627/lookangEJSworkspace/export/ejs_GField_and_Potential_1D_v7wee.jar
https://dl.dropbox.com/u/44365627/lookangEJSworkspace/export/ejs_GFieldandPotential1Dv7EarthMoon.jar
https://dl.dropbox.com/u/44365627/lookangEJSworkspace/export/ejs_KeplerSystem3rdLaw03.jar
https://dl.dropbox.com/u/44365627/lookangEJSworkspace/export/ejs_EarthAndSatelite.jar
Time: Apr 4, 16:18 GMT
Authors
Lookang Lawrence Wee 
This email address is being protected from spambots. You need JavaScript enabled to view it. 

The conference will take place at Faculty of Education of UNED. The Faculty is in c/ Juan del Rosal 14, 28040 Madrid (GPS coordinates 40.451196, -3.737642) and can easily reached:
HowToReach
slides




















 

 



Software Requirements

Java in 2012

JavaScript after 2017

Credits

http://weelookang.blogspot.sg/2012/01/gravity-physics-by-inquiry-2012-innergy.html

end faq

4.9 1 1 1 1 1 1 1 1 1 1 Rating 4.90 (5 Votes)