Windows/MacOSX/Linux including Laptops/Desktops

Title Modified Date
7.1.4 (N84/P2/Q7) Binary Stars JavaScript HTML5 Applet Simulation Model 25 May 2017
7.1.5 (N09/I/16) Binary StarsJavaScript HTML5 Applet Simulation Model 25 May 2017
7.2 Gravitational Field JavaScript HTML5 Applet Simulation Model 25 May 2017
7.2.7 Gravitational Field Earth JavaScript HTML5 Applet Simulation Model 25 May 2017
7.3 Gravitational Potential Energy JavaScript HTML5 Applet Simulation Model 25 May 2017
7.3.8 Relationship between F and U; between g and φ JavaScript HTML5 Applet Simulation Model 25 May 2017
7.3.8.4 Gravitational Field and Potential Earth JavaScript HTML5 Applet Simulation Model 25 May 2017
7.3.8.6 Earth Moon Escape Velocity Potential One Dimension JavaScript HTML5 Applet Simulation Model 25 May 2017
7.3.8.6.3 Earth Moon Escape Velocity Field Strength One Dimension JavaScript HTML5 Applet Simulation Model 25 May 2017
7.4 Satellite in Circular Orbits JavaScript HTML5 Applet Simulation Model 25 May 2017
10 Pendulum JavaScript Model Simulation Applet HTML5 25 May 2017
10.1.3 Horizontal Spring Mass Model X vs t JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2 Definition of Simple Harmonic Motion and Horizontal Spring Mass Model A vs X JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2.3 Horizontal Spring Mass Model Velocity versus Position JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2.4 Horizontal Spring Mass Model Acceleration versus Position JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2.5 Example Spring (k=9 N/m) - Mass (m=1 kg) model x0=0, v0 =6 Position versus time JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2.6 Example Spring (k=9 N/m) - Mass (m=1 kg) JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2.7 Example Spring k=(π^2)/9 N/m, mass m=1 kg model versus Time for t = 1.5 Period JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2.8 Example Spring k=(π^2)/25 N/m) mass m=1 kg model versus Time JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2.9 Example Spring (k=(π^2)/4 N/m) - Mass (m=1 kg) model versus Time 25 May 2017
10.2.10 Example Spring (k=16 N/m) - Mass (m=1 kg) model Velocity versus Position JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2.11 Example Vertical Spring Mass JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2.12 Example Vertical Spring Mass Model Position y = 7m JavaScript HTML5 Applet Simulation Model 25 May 2017
10.2.13 Experimental Investigation of Vertical Oscillator Model Position y = 2 JavaScript HTML5 Applet Simulation Model 25 May 2017
10.3 Variation with Time of Energy in Simple Harmonic Motion JavaScript HTML5 Applet Simulation Model 25 May 2017